Ore extensions of abelian groups with operators

Patrik Lundström

University West

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Talk based on joint work

P. Bäck, P. Lundström, J. Öinert and J. Richter.
 Ore extensions of abelian groups with operators

Available at https://arxiv.org/abs/2410.16761

Motivating question

When are "polynomesque" structures noetherian?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ▶ ④ ヘ ()

Rings and modules

- ▶ Let R be a *ring*. By this we mean that R is an additive group with a map $R \times R \ni (r, s) \mapsto rs \in R$.
- ▶ By a left *R*-module we mean an additive group *M* with a map $R \times M \ni (r, m) \mapsto rm \in M$.
- Every ring is a left module over itself.
- ► A left *R*-module *M* is said to be:
 - Left distributive if r(m + n) = rm + rn, $r \in R$, $m, n \in M$.
 - ▶ Right distributive if $(r + s)m = rm + sm, r, s \in R, m \in M$.
 - Associative if (rs)m = r(sm), $r, s \in R$, $m \in M$.

Noetherian rings and modules

- Suppose *M* is a left *R*-module.
- An additive subgroup N of M is called an R-submodule if RN ⊆ N.
- *M* is said to be *Noetherian* if any chain $N_0 \subseteq N_1 \subseteq \cdots \subseteq N_i \subseteq \cdots$ of *R*-submodules of *M* eventually stabilizes, that is if there is some $k \in \mathbb{N}$ such that $N_i = N_k$ for every $i \geq k$.
- ► R is said to be left Noetherian if it is Noetherian as a left module over itself. Then submodule ⇔ ideal.

All rings and modules are assumed to be both left and right distributive.

Hilbert's basis theorem (Hilbert 1890)

Suppose R is an associative and unital ring. Then R[X] is left/right noetherian $\Leftrightarrow R$ is left/right noetherian.

A skew Hilbert's basis theorem (Noether and Schmeidler 1920)

Suppose R is an associative and unital ring and let σ be a ring automorphism of R. If R is left/right noetherian, then the skew polynomial ring $R[X;\sigma]$ is left/right noetherian.

An Ore extension Hilbert's basis theorem (Cohn 1971; Faith 1973)

Suppose R is an associative and unital ring. Let σ be a ring automorphism of R and let δ be a σ -derivation of R. If R is left/right noetherian, then the Ore extension $R[X; \sigma, \delta]$ is left/right noetherian.

- A hom-associative Hilbert's basis theorem (Bäck and Richter 2018)
- Let R be a hom-associative and unital ring with twisting map α . Let σ be a ring automorphism of **R** and let δ be a σ -derivation that both commute with α . Extend α homogeneously to $R[X; \sigma, \delta]$. If R is left/right noetherian, then the nonassociative Ore extension $R[X; \sigma, \delta]$ is left/right noetherian.

A polynomial module Hilbert's basis theorem (Varadarajan 1982)

Suppose that R is an associative, but not necessarily unital, ring and M is an associative left R-module. Then the left R[x]-module M[x] is Noetherian if and only if Mis Noetherian and s-unital (that is $m \in Rm$ for $m \in M$).

Natural questions

- Is it possible to define a class of "Ore module extensions" so that these simultaneously generalize polynomial modules and classical Ore extensions?
- If so, can algebraical structure results for Ore module extensions, such as associativity and a Hilbert's basis theorem, be established?

MAIN RESULTS

B is an abelian group with operators in a nonempty set A.

- Let B[x; σ_B, δ_B] be an Ore group extension of a stably Noetherian abelian group B on which the action of A is weakly s-unital. Let σ_B be an A-stable surjection of B. Then B[x; σ_B, δ_B] is stably Noetherian, seen as a group with operators in A[x].
- Consider B[x] as an abelian group with operators in A[x]. Then B[x] is stably Noetherian ⇔ B is stably Noetherian and the action on B is weakly s-unital.

Krull (1925) and Noether (1929)

 \blacktriangleright Let $\alpha : A \rightarrow B^B$ be an *action* of a set A on a set B. ▶ By abuse of notation $ab := \alpha(a)(b)$, $a \in A$, $b \in B$. \blacktriangleright If (B, \cdot) is a group, then it is called a group with operators in A if $a(b \cdot c) = (ab) \cdot (ac), a \in A, b, c \in B$. ▶ Note that no assumption is made on associativity of the action since $a_1(a_2b) = (a_1a_2)b$ makes no sense!

Folklore (Jacobson, Bourbaki, ...)

- Suppose B is a group with operators in A. Let $S \subseteq B$.
- ▶ *S* is called *stable* if $AS \subseteq S$.
- The intersection of the family of stable subgroups of B that contain S is called the stable subgroup of B generated by S and is denoted by (S).
- If C is a stable subgroup of B such that C = (T) for some finite subset T of B, then C is said to be finitely generated by T.

Folklore

Consider the partially ordered set of stable subgroups of B, ordered by inclusion. We say that B is *stably Noetherian* if this partially ordered set satisfies the ascending chain condition.

Proposition

B is stably Noetherian \Leftrightarrow any nonempty family of stable subgroups of *B* has a maximal element \Leftrightarrow every stable subgroup of *B* is finitely generated.

Stable homomorphisms

Let *B* and *C* be groups with operators in *A*. Suppose that $f : B \to C$ is a group homomorphism. Then we say that *f* is *A*-stable if for every $b \in B$, $f(Ab) \subseteq Af(b)$ holds.

Proposition

Let B be a stably Noetherian group with operators in A. Suppose that $f : B \rightarrow B$ is a surjective A-stable group endomorphism. Then f is bijective.

Twisted homomorphisms

Let *B* and *C* be groups with operators in *A*. Suppose that $f: B \to C$ is a group homomorphism. Let τ be a map $A \to A$. We say that *f* is τ -*twisted* if for all $a \in A$ and all $b \in B$, the equality $f(ab) = \tau(a)f(b)$ holds.

Proposition

Let B and C be groups with operators in A. Suppose that $f : B \to C$ is a τ -twisted group homomorphism for some map $\tau : A \to A$. Then f is A-stable.

Weakly s-unital action

Suppose B is a group with operators in A and let $S \subseteq B$. Put $\widetilde{S} := \bigcup_{n \in \mathbb{N}_+} (A^n S)$. Let [S] denote the set of all $b_1 \cdots b_n$, for $n \in \mathbb{N}_+$, where for each $k \in \{1, \ldots, n\}$, $b_k \in \widetilde{S}$ or $b_k \in \left(\widetilde{S}
ight)^{-1}$. We say that the action of A on Bis *s*-unital (resp. weakly *s*-unital) if for every $b \in B$ the relation $b \in Ab$ (resp. $b \in [b]$) holds. Example

 $A = \{a\}, B = C_3, ab = b^{-1} \Rightarrow$ weakly s-unital action which is not s-unital.

Abelian groups with operators

- Suppose that (B, +, 0) is an *abelian* group with operators in a nonempty set A.
- We always assume that A has a zero element. By this, we mean an element ε ∈ A such that for any b ∈ B, εb = 0. We will assume that ε is fixed.
- ▶ By abuse of notation, we put $0 := \epsilon$, so that a0 = 0b = 0 holds for all $a \in A$ and $b \in B$.

Polynomial groups

By a *polynomial* over A we mean a formal sum $\sum_{i \in \mathbb{N}} a_i x^i$, where $a_i \in A$, for $i \in \mathbb{N}$, and $a_i = 0$ for all but finitely many $i \in \mathbb{N}$. The set of polynomials over A is denoted by A[x]. We define B[x] similarly and equip it with an abelian group structure in the following way. If $\sum_{i\in\mathbb{N}} b_i x^i, \sum_{i\in\mathbb{N}} b'_i x^i \in B[x]$, then we put

$$\sum_{i\in\mathbb{N}}b_ix^i+\sum_{i\in\mathbb{N}}b'_ix^i:=\sum_{i\in\mathbb{N}}(b_i+b'_i)x^i.$$

The zero polynomial is defined to be $0 := \sum_{i \in \mathbb{N}} 0x^i$

π -maps

Let σ_B and δ_B be group endomorphisms of B. Take $i, j \in \mathbb{N}$. We define $\pi_j^i \colon B \to B$ in the following way. If $i \ge j$, then we let $\pi_j^i \colon B \to B$ denote the sum of all $\binom{i}{j}$ compositions of j instances of σ_B and i - jinstances of δ_B .

▶ If
$$i < j$$
, then we put $\pi_j^i := 0$.

Ore group extension

The Ore group extension $B[x; \sigma_B, \delta_B]$ is the abelian group B[x] having A[x] as a set of operators, with action:

$$\left(\sum_{i\in\mathbb{N}}a_ix^i
ight)\left(\sum_{j\in\mathbb{N}}b_jx^j
ight):=\sum_{i,j,k\in\mathbb{N}}\left(a_i\pi_k^i(b_j)
ight)x^{k+j}$$

for $\sum_{i \in \mathbb{N}} a_i x^i \in A[x]$ and $\sum_{j \in \mathbb{N}} b_j x^j \in B[x]$. By abuse of notation, we write B[x] for $B[x; id_B, 0_B]$.

σ -derivation and σ -twist

- Suppose from now on that σ_A and δ_A are maps $A \to A$ and that σ_B and δ_B are additive maps $B \to B$.
 - ► We say that δ_B is a δ_A -twisted σ_A -derivation if $\delta_B(ab) = \sigma_A(a)\delta_B(b) + \delta_A(a)b$ for $a \in A$ and $b \in B$.
 - ► We say that σ_B is σ_A -twisted if $\sigma_B(ab) = \sigma_A(a)\sigma_B(b)$ for all $a \in A$ and $b \in B$.

Classical identities

Vandermonde's identity

$$\sum_{i\in\mathbb{N}}\pi_i^k\circ\pi_{j-i}^n=\pi_j^{k+n}$$

Leibniz's identity

$$\pi^{m}_{i}(\textit{ab}) = \sum_{k \in \mathbb{N}} \pi^{m}_{k}(\textit{a}) \pi^{k}_{i}(\textit{b})$$

Mixed Vandermonde's and Leibniz's identity

$$\sum_{i\in\mathbb{N}}\pi_i^m(a\pi_{j-i}^n(b))=\sum_{i\in\mathbb{N}}\pi_i^m(a)\pi_j^{i+n}(b)$$

MAIN RESULTS

B is an abelian group with operators in a nonempty set A.

- Let B[x; σ_B, δ_B] be an Ore group extension of a stably Noetherian abelian group B on which the action of A is weakly s-unital. Let σ_B be an A-stable surjection of B. Then B[x; σ_B, δ_B] is stably Noetherian, seen as a group with operators in A[x].
- Consider B[x] as an abelian group with operators in A[x]. Then B[x] is stably Noetherian ⇔ B is stably Noetherian and the action on B is weakly s-unital.

Applications

- The Cayley-Dickson doubling procedure
- $\overline{(a,b)} := (\overline{a},-b)$ and $(a,b)(c,d) := (ac d\overline{b}, cb + \overline{a}d)$
 - $\blacktriangleright \ \mathbb{R} \subseteq \mathbb{C} \subseteq \mathbb{H} \subseteq \mathbb{O} \subseteq \mathbb{S} \subseteq \cdots \ \text{left/right distributive}$
 - ▶ Finite-dimensional \Rightarrow Noetherian.
 - ▶ C not ordered.
 - ▶ Ⅲ not commutative.
 - ▶ ◎ not associative
 - ► S has zero divisors (hence norm not multiplicative).

Applications

The Conway-Smith doubling procedure

$$(a,b)(c,d) := \begin{cases} \left(ac - \overline{bd}, \overline{\overline{bc}} + \overline{\overline{bab}} - \overline{\overline{bb}}, \overline{\overline{bb}} - \overline{\overline{bbb}}, \overline{bbb}, \overline{$$

- $\blacktriangleright \ \mathbb{R} \subseteq \mathbb{C} \subseteq \mathbb{H} \subseteq \mathbb{O} \subseteq 16 \text{-ons} \subseteq 32 \text{-ons} \subseteq \cdots$
- ▶ Finite-dimensional \Rightarrow Noetherian.
- Left distributive.
- ► The 16-ons are not right distributive.
- ► All of the 2ⁿ-ons are norm multiplicative!

Applications

- Dickson's *left near-fields* (1906) are *finite* rings, hence in particular Noetherian. Left near-fields are left distributive but not always right distributive.
- ▶ $\mathbb{F}_2 = \{0, 1\}$ field with two elements. $G = \{R, P, S\}$ is the rock, paper, scissors magma: $R^2 = R$, $P^2 = P$, $S^2 = S$, RP = P, RS = R, PS = S. The magma algebra $\mathbb{F}_2[G]$ is a Boolean ring. In particular, $\mathbb{F}_2[G]$ is weakly left *s*-unital. Since $\mathbb{F}_2[G]$ is finite, it is Noetherian. Therefore, $\mathbb{F}_2[G][x]$ is left Noetherian.

Thank you!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで