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Abstract

The simplification of algebraic expressions is a key step in many mathematical arguments; the
systematic study of this is called rewriting, and the theory of Gröbner bases arises as an
application to commutative algebra. For higher algebraic structures, things are not so
straightforward; it may be quite difficult to distinguish one expression as simpler than another.
Normally one requires the order which decides what is simpler (in Gröbner basis theory the “term
order”) to be compatible with placing monomials in contexts, but if such contexts may permute
free variables then this prohibits the order from distinguishing expressions which are equal up to
such permutation. In for example the theory of Lie algebras, that would render all terms of both
the anti-commutativity and the Jacobi axioms incomparable, and thus useless for rewriting.

Unfailing Completion, introduced for term rewriting by Hsiang–Rusinowitch and
Bachmair–Dershowitz–Plaisted in the 1980’s, gets around this by abandoning compatibility,
allowing the monomials to be ordered arbitrarily. Rewrite rules go every way, but are conditional:
one may only apply a rule when doing so makes the expression smaller. This means one may need
several resolutions of an ambiguity (critical pair), because what works in one context need not
work in another. Enumeration of a sufficient set of cases is an interesting problem, with some
similarities to that of enumerating all Gröbner bases of an ideal.

In this talk I will show how to integrate unfailing completion for networks into my multi-sorted
“generic framework” for diamond lemmas.
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A Diamond Lemma is a result relating

implicit descriptions of an algebraic structure, in terms of generators
and relations, and

explicit descriptions of an algebraic structure, using a basis or other
normal form.

Setting up the machinery lets you extract an explicit description from the
implicit one, and gives you a discrete set of cases to check, by concrete
calculations, for whether the two descriptions match.
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Bergman’s Diamond Lemma

The Diamond Lemma for Ring Theory applies to quotients of a free
associative algebra R⟨X⟩, where R is a commutative ring with unit.
For simplicity, I will assume R is a field here.

To prepare subsequent generalisation, denote:

Y is the set of monomials in R⟨X⟩.
M is all of R⟨X⟩.
Any relation to impose upon R⟨X⟩ can be given be form

µs ≡ as where s = (µs, as) ∈ Y ×M.
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Reductions

A simple reduction is a linear mapM−→M which replaces one monomial
by something equivalent to that monomial.

These can be parametrised by rules s = (µs, as) ∈ Y ×M and context
λ, ν ∈ Y, to be defined as

tλsν(µ) =

{
λasν if µ = λµsν,

µ otherwise
for all µ ∈ Y

and then extended to all ofM by linearity.

General reductions are finite compositions of simple reductions.
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Rewrite systems

A rewrite system S is a set of rewrite rules s = (µs, as) ∈ Y ×M.
It defines a two-sided ideal

I(S) = ⟨µs−as⟩s∈S =

{ n∑
i=1

riλi(µsi −asi)νi

∣∣∣∣ n ⩾ 0, {λi}ni=1, {νi}ni=1 ⊂ Y
{ri}ni=1 ⊆ R, {si}ni=1 ⊆ S

}
and a set of simple reductions by S

T1(S) = {tλsν}λ,ν∈Y,s∈S .

T (S) is the set of finite compositions of such simple reductions.

A general element b ∈M is irreducible (a normal form) with respect to S if
t(b) = b for all t ∈ T1(S).
The set of all irreducible elements is denoted Irr(S).
This subspace is our candidate for model of the quotientM

/
I(S).
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Confluence and the Diamond Condition

Some c ∈ Irr(S) is called a normal form of b ∈M if there is some t ∈ T (S)
such that c = t(b).

It follows thatM = Irr(S)⊕ I(S), and thusM
/
I(S) ∼= Irr(S) (as vector

spaces), if every b ∈M has a unique normal from.
Such a rewrite system S is said to be confluent.

A necessary and sufficient condition for confluence
(given lesser requirements) is the diamond condition
(a.k.a. local confluence): for any b, a1, a2 ∈M and
t1, t2 ∈ T1(S) such that a1 = t1(b) and a2 = t2(b),
there exist t3, t4 ∈ T (S) such that t3(a1) = t4(a2).

b

a1 a2

c

t1 t2

t3 t4

An aim is to find a small set of ambiguities (t1, b, t2) that are sufficient to
check.
To begin with, because of linearity we need only consider b ∈ Y.
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Completion

When checking confluence, one may come
across cases where the diamond fails to close.

These are explicit counterexamples to
confluence, and c1 − c2 ∈ Irr(S) ∩ I(S).

b

a1 a2

c1 c2

t1 t2

t3 t4

c1 ̸= c2
both
irreducible.

One can try to mend this by constructing a
new rule s′ out of c1 − c2 ≡ 0, and then seek
to prove confluence of S′ := S ∪ {s′}.

Adding s′ closes this diamond, but likely
creates more ambiguities that need to be
checked. The process need not terminate.

b

a1 a2

c1

c2

t1 t2

t3
t4

t5

t5 ∈ T (S′)\
T (S)
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Order

The Diamond Lemma is proved by well-founded induction on the monomials
Y.
This requires an order P on Y, which is tailored to each application.

Reductions t ∈ T (S) have to be compatible with the order, in the sense that

if t(µ) ̸= µ then t(µ) ∈ Span
(
{ ν ∈ Y | ν < µ in P }

)
.

Provided ν < µ in P implies κνλ < κµλ in P for ν, µ, λ, κ ∈ Y, this boils
down to a condition that

the left hand side µs of a rule must be strictly larger than
every term in the right hand side as.

Hence, during completion, the order P determines which term is used for
left hand side.
This will present some problems for us later.
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Beyond associative algebras

Back in 2004, Jean-Louis Loday asked me whether this could be generalised
to algebraic structures exhibiting features such as:

• Multiple multiplication-like operations.

• Multiplication-like operations of arity greater than 2.

My conclusion — after a day of thought — was that this was indeed
possible, but would require rebuilding the supporting machinery.

It took until 2007 before my Generic Framework for Diamond Lemmas was
ready for upload to arXiv.

• Lars Hellström. A Generic Framework for Diamond Lemmas (2007),
74 pages. arXiv:0712.1142v1 [math.RA].
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Operads

An operad Q is a collection
{
Q(n)

}
n∈N of linear spaces.

The elements of component Q(n) are like multilinear expressions with n free
variables.
In particular, the operad has to be closed under composition of elements,
and that composition must behave like substitution for free variables.
(Warning: the formal details get messy.)

In an operad Q, one might find:
Q(0) (nonassociative) algebra elements

Q(1) operators; associative algebra elements
Example: the hom α of a hom-algebra

Q(2) binary operations; quadratic identities
multiplication, (Lie) bracket; (anti-)commutativity

Q(3) ternary operations, cubic identities
associativity, Jacobi identity, Leibniz identity

...
...
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Multi-sorted framework

An operad is a multi-sorted algebraic structure — elements are syntactically
different, since how many other elements an element would be composed
with depends on to which component it belongs.

This calls for the rewriting framework to also be multi-sorted. There is a set
of sorts I, and for each sort i ∈ I there is:

• a spaceM(i) of general elements of sort i,

• a set Y(i) ⊂M(i) of monomials of sort i,

• a well-founded order P (i) on Y(i),
• a set T1(S)(i) of simple reductionsM(i) −→M(i),

• derived sets Irr(S)(i), I(S)(i) ⊆M(i) and T (S)(i).

The induction for the diamond lemma is done separately in each sort.
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Unifying structures

The rewrite system S is not per sort, but common for all sorts.
A rule s may be formalised as a triple (is, µs, as) where µs ∈ Y(is) and
as ∈M(is).

The multiplicative structure is what ties the components together.
Because there is not just one ‘multiplication’ operation, this is encoded into
context maps v that maps monomials to (larger) monomials, just like

v(b) = λbν for all b ∈M.

(This nicely abstracts away a lot of messy technicalities.)

Formally, the context maps are collected in a category V, with the sorts as
objects, and context maps as morphisms:

v ∈ V(i, j) has v :M(j) −→M(i) with v
(
Y(j)

)
⊆ Y(i) ∪ {0}

For any µ ∈ Y(j), t ∈ T (S)(j), and v ∈ V(i, j) there must be some
t′ ∈ T (S)(i) such that t′

(
v(µ)

)
= v

(
t(µ)

)
.
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Reduction definition

The obvious definition of simple reductions in this framework is

tv,s(µ) =

{
v(as) if µ = v(µs),

µ otherwise
for µ ∈ Y(i), extend by linearity

where s = (is, µs, as) ∈ S and v ∈ V(i, is).

That V is closed under composition lets you transport rewrites carried out
in someM(j) toM(i) across a context map v ∈ V(i, j).

If for λ, µ ∈ Y(j) and v ∈ V(i, j)

λ < µ in P (j) =⇒ v(λ) < v(µ) in P (i)

then correct orientation of a rule implies all simple reductions generated by
that rule are compatible with the ordering.

If, in the associative algebra setting, one instead restricts V to maps multiplying on
only one side, the framework cranks out a theory for quotients by one-sided ideals.
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Rewrite example
Associativity can expressed using the arity 3 rule3,

  ,

 
This provides for rewrite steps such as a b c

→
 a b c


by inserting

and into the context

 a b c

 .
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Ambiguity example
The same rule gives rise to the ambiguity

a b c b

←


a b c b

→


a b c b


among with many others, in arity 0.

These are all mere shadows of the critical ambiguity of this rule with itself,
which is found in arity 4:

←


→
 

Once you strip away the irrelevant context, you are left with those few cases
you actually need to check.
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



 


 



The straightforward
resolution of this
particular ambiguity is
sometimes celebrated as
“the associativity
pentagon”.

When applying the
generic framework for a
new Y and V, you need to
analyse how ambiguities
can be stripped down for
these. Usually it boils
down to enumerating the
ways in which two
monomials can overlap.
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Total versus partial
In the Gröbner basis tradition, the ordering has to be total because they
need to single out the leading term of arbitrary ideal basis elements when
using them as rules.

In Bergman’s tradition, orderings can be partial because the separation of
left and right hand sides in rules is explicit.

One might expect total orderings to be more powerful, but it turns out
there are things that a partial order can do which a total order cannot.
Examples in:
• Lars Hellström and Sergei D. Silvestrov. Ergodipotent maps and commutativity

of elements in noncommutative rings and algebras with twisted intertwining.
J. Algebra 314 (1) (2007), 17–41. Doi: 10.1016/j.jalgebra.2007.03.031

• Lars Hellström. Network rewriting II: bi- and Hopf algebras, pp. 194–208 in:
26th International Conference on Rewriting Techniques and Applications,
LIPIcs. Leibniz Int. Proc. Inform. 36 (2015). Doi:
10.4230/LIPIcs.RTA.2015.194

• Lars Hellström. Valued custom skew fields with generalised PBW property
from power series construction. Pp. 33–55 in: Engineering mathematics. II,
Springer Proc. Math. Stat. Vol. 179 (2016). Doi:
10.1007/978-3-319-42105-6 3

https://doi.org/10.1016/j.jalgebra.2007.03.031
https://doi.org/10.4230/LIPIcs.RTA.2015.194
https://doi.org/10.1007/978-3-319-42105-6_3
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The permutation problem

Among the context modifications that you can do in an operad is to
permute the inputs, written as a right action by a permutation: bσ for
b ∈ Q(n) and σ ∈ Σn.

Consider v(b) = bσ. If v(µ) ̸= µ then a total P (n) would have

µ < v(µ) < v◦2(µ) < · · · < v◦k(µ) in P (n)

or
µ > v(µ) > v◦2(µ) > · · · > v◦k(µ) in P (n).

However, for some k > 0 we get σk = id, and thus v◦k(µ) = µ, contradicting
transitivity.

The conclusion is that if your algebraic structure allows contexts that are
purely permutations, then monomials which are permutations of each other
have to be unrelated, so the ordering cannot be total.
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Lie axioms are troublesome
In the standard anticommutativity[ ]

+

[ ]
≡ 0

and Jacobi  +

 +

  ≡ 0

axioms of a Lie algebra, all terms are permutations of each other.
That means you can’t make any rules out of these!

You can be clever and derive the Leibniz identity  ≡
 −

 
where you can order the left hand side as larger than the right hand side
terms, but that’s an undesirable amount of preprocessing.
Also, Leibniz algebras are a wider class than Lie algebras.
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It’s more than just the permutations

When going beyond operads, to general networks as monomials, you
encounter more comparisons than merely permutations that are
troublesome.
In a Frobenius algebra, there is an identity  ≡

 
which is difficult to orient into a rule, because inputs and outputs here have
different “dependencies” on each other: output-1 on input-2 in LHS, but
not in RHS, whereas output-2 depends on input-1 in RHS, but not in LHS.

There might be a way around that if one discovers a new construction for
ordering networks — I don’t have a proof that it’s not possible, as in the
case of the permutations — but progress has not been promising.
It’s hard to distinguish networks using an ordering, if that ordering is also
to be preserved under placing things in contexts.



Classical Diamond Lemma The generic framework Orderings Unfailing completion

Ordinary completion may fail

For applying the diamond lemma, you might have succeeded with orienting
all defining relations into rules, in which case a partial order suffices.

But if the aim is to run completion on a rewrite system, then you may
encounter derived relations with multiple leading terms (multiple
monomials are maximal), and then you cannot proceed. →

 −
  or

 →
 +

  ?

There’s no structural reason for picking one over the other!

Such a situation is described by saying the completion procedure fails.
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Unfailing completion

Hsiang–Rusinowitch (1987) and Bachmair–Dershowitz–Plaisted (1989)
suggested schemes of unfailing completion in term rewriting to overcome
similar problems, mostly caused by relations that permute free variables.

The ideas are:

• Make sure you use a total order, if necessary by extending it arbitrarily.
This loses preservation of order when changing the context.

• Make rewriting conditional: only apply a rewrite rule in those contexts
where it makes things smaller.
This restores induction, but may cause resolutions to work in some
contexts but not others.

• Orient every identity every way.
There is one rule which rewrites in one direction, and another rule
which rewrites in the other direction. Which of those two rules you
may apply depends on the context.

https://doi.org/10.1007/3-540-18088-5_6
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Unfailing in the generic framework

Since reductions are explicit entities in the generic framework, conditional
rewriting is simply a matter of changing how the reductions are generated.

For a rule s = (j, µ, a) where a =
∑n

k=1 rkκk, the modified construction of
the simple reduction tv,s with v ∈ V(i, j) becomes

tv,s(λ) =

{
v(a) if λ = v(µ) and v(κk) < λ in P (i) for k = 1, . . . , n,

λ otherwise

for λ ∈ Y(i), extend by linearity.

The problem with this is: it need no longer be possible to transport
resolutions across context maps, because some of the steps in a resolution
might not exist in the target! (The rewrite step you wanted to take may
violate the order condition.)
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Order multiple ways

A freedom that exists in the generic framework is the system of sorts.
Syntactic differences imposes a minimal separation of elements into different
sorts, but there is no upper bound on how fine-grained the sort system can
be.

In particular, you can have sorts i1 ̸= i2 with the same expressions and the
same monomials, but different orders:

M(i1) =M(i2), Y(i1) = Y(i2), P (i1) ̸= P (i2):

µ < ν in P (i1) but µ > ν in P (i2) for some µ, ν ∈ Y(i1) = Y(i2).

This way, encountering essentially the same ambiguity in contexts that are
so different that no single resolution works everywhere is no problem: they
may be regarded as shadows of different versions of the same critical
ambiguity, that are cast from different sorts.
As long as both versions have resolutions, there are resolutions of both
shadows; in one context the ambiguity is resolved one way, in another
context it is resolved another way.
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Unfailing set-up
You start with a basic set of sorts I0, and usual framework data for this:

• Per-sort general expressions
{
M(i)

}
i∈I0 , monomials

{
Y(i)

}
i∈I0 , and

well-orders
{
P0(i)

}
i∈I0 .

• Category of context maps V0, with set of objects I0.

• System of rules s = (i, µ, a) where i ∈ I0, µ ∈ Y(i), and a ∈M(i).

Then introduce a “bundle” I over I0, with projection π : I −→ I0, and turn
I into the set of sorts in a more fine grained system.

• Within each fibre of I, all theM and Y are the same as in the
corresponding base sort.

• The order P varies between sorts in the same fibre. Some sort i in each
fibre has P (i) = P0

(
π(i)

)
.

• The morphisms of V (context maps) are likewise duplicated, but not
maximally. Instead we only keep those lifts where the domains and
codomains have matching ordering for this context: some
v ∈ V0

(
π(i), π(j)

)
is only in V(i, j) if

λ < µ in P (j) =⇒ v(λ) < v(µ) in P (i) for all λ, µ ∈ Y(j).
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Brute force fine structure

A brute force choice of bundle over I0 is to use all morphisms of V0:
• v ∈ V0(i, j) for i, j ∈ I0 becomes a sort in the fibre over j (the domain).

• Starting from some family
{
P0(i)

}
i∈I0 of “base orders”, define

λ ⩽ µ in P (v) ⇐⇒ v(λ) ⩽ v(µ) in P0(i) for v ∈ V0(i, j), i, j ∈ I0.

Then the orders become compatible with the morphisms of V by definition.

In practice, V is a much too complicated set to be manageable as set of
sorts.

What one wants is for each fibre π−1(j0) of I to be given by some
parametrisation of the orders P (j) on that fibre, such that the family P is
closed under applying contexts: for any i ∈ I, j0 ∈ I0, and v ∈ V0

(
π(i), j0

)
there exists j ∈ π−1(j0) such that

λ ⩽ µ in P (j) ⇐⇒ v(λ) ⩽ v(µ) in P (i)

Hence ambiguities in sort i can be shadows of ambiguities in sort j.



Classical Diamond Lemma The generic framework Orderings Unfailing completion

Finding sufficient resolutions
With an unfailing set-up for the generic framework, enumerating
ambiguities is the same as usual.

But an ambiguity might require several resolutions, so that in every context
there’s one which works.

These are always resolutions of the usual critical ambiguity, so they are all
in the same fibre, but that fibre can be very big — for a base sort of arity n
operad elements, the fibre might be parametrised by n× n matrices (over Z,
Q, or R).
You can’t check every sort in the fibre explicitly, but you don’t need to —
the set of possible resolutions of an ambiguity is much smaller than the
parent fibre.
(This is a bit like finding all the reduced Gröbner bases of an ideal in some
C[x1, . . . , xn] — there can be lots of these, but not infinitely many, because
any reduced Gröbner basis has to be a selection of monic polynomials
actually in the ideal.)

I have a recent paper on how to turn this enumeration problem into an
optimisation problem. For operads, you solve linear programmes.
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Thank you for listening!

On finding a covering set of resolutions:

• Lars Hellström. Bilinear Feasibility and Unfailing Network Completion
(2025). In press.

Classical (fallible) network rewriting:

• Lars Hellström. Network Rewriting I: The Foundation (2012).
https://arxiv.org/abs/1204.2421 [math.RA].

• Lars Hellström. Network rewriting utility description.
In: S. Silvestrov, A. Malyarenko (eds.) Non-commutative and
Non-associative Algebra and Analysis Structures, pp. 429–476. Springer
International Publishing, Cham (2023).
Doi: 10.1007/978-3-031-32009-5 17

https://arxiv.org/abs/1204.2421
https://doi.org/10.1007/978-3-031-32009-5_17
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