Generalized Weyl Algebras and their representations

Jonathan Nilsson

Linköping University

March 27, 2025

Based on current work with Samuel Lopes (Universidade do Porto).

Let *R* be a ring, $a \in Z(R)$ a central element, and $\sigma \in Aut(R)$ a ring automorphism. The corresponding **Generalized Weyl Algebra** $R(\sigma, a)$ is generated by *R* and two variables *x* and *y* with relations

$$xr = \sigma^{-1}(r)x$$
 $yr = \sigma(r)y$ $xy = a$ $yx = \sigma(a)$

Algebra $R(\sigma, a)$ Classical Weyl Algebra Quantum torus Quantum Weyl Algebra $U(\mathfrak{sl}_2)$ /central action Smith algebras/central action Ring RAutomorphism σ Element ak[h] $\sigma(h) = h - 1$ h $k[t, t^{-1}]$ $\sigma(t) = qt$ tk[h] $\sigma(h) = qh - 1$ h $\mathbb{C}[h]$ $\sigma(h) = h - 2$ $\frac{1}{4}h(h+2)$ k[h] $\sigma(h) = h - 1$ $p(h) \in k[h]$

Assume from now on that R is a UFD. Let $A = R(\sigma, a)$ be a GWA and let V be an A-module. For each maximal ideal $\mathfrak{m} \subset R$ we define the corresponding **weight space**:

$$V_{\mathfrak{m}} = \{ v \in V \mid \mathfrak{m}v = 0 \}.$$

Assume from now on that R is a UFD. Let $A = R(\sigma, a)$ be a GWA and let V be an A-module. For each maximal ideal $\mathfrak{m} \subset R$ we define the corresponding **weight space**:

$$V_{\mathfrak{m}} = \{ v \in V \mid \mathfrak{m}v = 0 \}.$$

The **support** of *V* is the set of weights: supp $(V) = \{\mathfrak{m} \in Max(R) \mid V_{\mathfrak{m}} \neq \{0\}\}.$

Assume from now on that R is a UFD. Let $A = R(\sigma, a)$ be a GWA and let V be an A-module. For each maximal ideal $\mathfrak{m} \subset R$ we define the corresponding **weight space**:

 $V_{\mathfrak{m}} = \{ v \in V \mid \mathfrak{m}v = 0 \}.$

The support of V is the set of weights: $\operatorname{supp}(V) = \{\mathfrak{m} \in \operatorname{Max}(R) \mid V_{\mathfrak{m}} \neq \{0\}\}.$ V is called a weight module if $V = \bigoplus_{\mathfrak{m} \in \operatorname{supp}(V)} V_{\mathfrak{m}}.$

Assume from now on that R is a UFD. Let $A = R(\sigma, a)$ be a GWA and let V be an A-module. For each maximal ideal $\mathfrak{m} \subset R$ we define the corresponding **weight space**:

 $V_{\mathfrak{m}} = \{ v \in V \mid \mathfrak{m}v = 0 \}.$

The support of V is the set of weights: $\operatorname{supp}(V) = \{\mathfrak{m} \in \operatorname{Max}(R) \mid V_{\mathfrak{m}} \neq \{0\}\}.$ V is called a weight module if $V = \bigoplus_{\mathfrak{m} \in \operatorname{supp}(V)} V_{\mathfrak{m}}.$

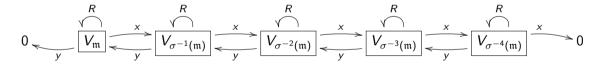
Definition

For $\mathfrak{m} \in Max(R)$ Let $R_{\mathfrak{m}}$ be the R[y]-module which is equal to R/\mathfrak{m} as an R-module, and where y acts as zero. Define the corresponding Verma module as the A-module

$$V(\mathfrak{m}) = R(\sigma, \mathbf{a}) \otimes_{R[y]} R_{\mathfrak{m}}.$$

Then $V(\mathfrak{m})$ has a unique maximal submodule and a corresponding simple quotient $L(\mathfrak{m})$.

Visualization of a simple weight module $L(\mathfrak{m})$ with finite support:



Lifting free modules for Lie algebras - previous work

For a Lie algebra \mathfrak{g} with Cartan subalgebra \mathfrak{h} , consider the following subcategory of $U(\mathfrak{g})$ -Mod: $\mathcal{C}_n = \{ M \in U(\mathfrak{g}) \text{-Mod} \mid \operatorname{Res}_{U(\mathfrak{h})}^{U(\mathfrak{g})} M \simeq U(\mathfrak{h})^{\oplus n} \}.$

Lifting free modules for Lie algebras - previous work

For a Lie algebra \mathfrak{g} with Cartan subalgebra \mathfrak{h} , consider the following subcategory of $U(\mathfrak{g})$ -Mod:

$$\mathcal{C}_n = \{ M \in U(\mathfrak{g}) ext{-}\mathsf{Mod} \mid \operatorname{Res}_{U(\mathfrak{h})}^{U(\mathfrak{g})} M \simeq U(\mathfrak{h})^{\oplus n} \}.$$

- Classification \mathfrak{C}_1 modules for $\mathfrak{g} = \mathfrak{sl}_n$ (N. 2015)
- Classification of \mathfrak{C}_1 modules for $\mathfrak{g} = \mathfrak{sp}_{2n}$ (N. 2016)
- Cartan-free modules do not exist for any other type of Lie algebras (N. 2016)
- Simple \mathfrak{sl}_2 -modules in \mathfrak{C}_n for arbitrary rank n (F. Martin, C. Prieto 2017)
- Generalizations and extensions of \mathfrak{C}_n for other types of algebras:
 - Virasoro algebras (G. Liu, K. Zhao)
 - Conformal algebras (Q. Xie et al.)
 - The Witt algebra (H. Tan, K. Zhao)
 - Algebras of differential operators (S. Gao et al.)
 - Heisenberg-Virasoro algebras (H. Chen, X. Guo)
 - Super Lie algebras (Y. Cai, K. Zhao)
 - Kac-Moody algebras (K. Zhao et al.)
 - Smith algebras (V. Futorny, S. Lopes, E. Mendonca)

For a GWA $R(\sigma, a)$, consider the full subcategories of $R(\sigma, a)$ -Mod:

 $\mathfrak{C} = \{ M \in R(\sigma, a) \text{-} \mathsf{Mod} \mid M \text{ is finitely generated over } R \}.$

This is an abelian category.

For a GWA $R(\sigma, a)$, consider the full subcategories of $R(\sigma, a)$ -Mod:

 $\mathfrak{C} = \{ M \in R(\sigma, a) \text{-} \mathsf{Mod} \mid M \text{ is finitely generated over } R \}.$

This is an abelian category. We define also $\mathfrak{C}_n \subset \mathfrak{C}$:

 $\mathfrak{C}_n = \{ M \in R(\sigma, a) \text{-} \mathsf{Mod} \mid M \simeq_R R^n \},\$

Let $R(\sigma, a)$ be a GWA. Let p|a be a divisor, and define $q = \sigma(a/p)$. We define a corresponding $R(\sigma, a)$ -module V_p , which as a set (and *R*-module) is *R* and where the action is given by:

$$x \cdot r = \sigma^{-1}(r)p$$
 and $y \cdot r = \sigma(r)q$.

Let $R(\sigma, a)$ be a GWA. Let p|a be a divisor, and define $q = \sigma(a/p)$. We define a corresponding $R(\sigma, a)$ -module V_p , which as a set (and *R*-module) is *R* and where the action is given by:

$$x \cdot r = \sigma^{-1}(r)p$$
 and $y \cdot r = \sigma(r)q$.

Then any module in \mathfrak{C}_1 is isomorphic to some V_p , and $V_p \not\simeq V_{p'}$ unless p and p' are associates.

From now on, let R be a principal ideal domain.

From now on, let R be a principal ideal domain.

Let W be a submodule of the $R(\sigma, a)$ -module V_p . Since R is a PID we have $W = \langle g \rangle$, and the submodules form a lattice. The GWA relations force $g | \sigma^{-1}(g) p$ and $g | \sigma(g) q$.

From now on, let R be a principal ideal domain.

Let W be a submodule of the $R(\sigma, a)$ -module V_p . Since R is a PID we have $W = \langle g \rangle$, and the submodules form a lattice. The GWA relations force $g | \sigma^{-1}(g) p$ and $g | \sigma(g) q$.

So if $g = \prod g_i$ is a complete factorization, we get

 $g_i|\sigma^{-1}(g)$ or $g_i|p$

and

 $g_i|\sigma(g)$ or $g_i|q$.

Write Irr(R) for the set of equivalence classes of irreducible elements of R modulo associates.

Write Irr(R) for the set of equivalence classes of irreducible elements of R modulo associates. $\langle \sigma \rangle$ acts on Irr(R). Let Ω be the set of orbits under this action. Write Irr(R) for the set of equivalence classes of irreducible elements of R modulo associates. $\langle \sigma \rangle$ acts on Irr(R). Let Ω be the set of orbits under this action. We can split elements of R according to σ -orbits. For $r \in R$ we have

$$r = \prod_{\omega \in \Omega} r_{\omega}$$
 where all irreducible factors of r_{ω} lies in ω .

Write Irr(R) for the set of equivalence classes of irreducible elements of R modulo associates. $\langle \sigma \rangle$ acts on Irr(R). Let Ω be the set of orbits under this action. We can split elements of R according to σ -orbits. For $r \in R$ we have

$$r = \prod_{\omega \in \Omega} r_{\omega}$$
 where all irreducible factors of r_{ω} lies in ω .

Then $\langle g \rangle \subset V_p$ is a $R(\sigma, a)$ -submodule if and only if $\langle g_{\omega} \rangle \subset V_{p_{\omega}}$ is a $R(\sigma, a_{\omega})$ -submodule for each $\omega \in \Omega$.

Assume that all factors of a lie in a single *infinite* σ -orbit. Then the maximal submodules of V_p have form $W = \langle g \rangle$ where g is a chain-product

$$g=\prod_{i=0}^n\sigma^i(z)$$

where z|q and $\sigma^n(z)|p$, and such that the factors in the middle of the chain divides neither p nor q.

Assume that all factors of a lie in a single *infinite* σ -orbit.

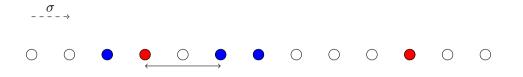
Then the maximal submodules of V_p have form $W = \langle g \rangle$ where g is a chain-product

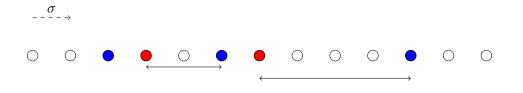
$$g=\prod_{i=0}^n\sigma^i(z)$$

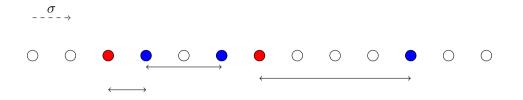
where z|q and $\sigma^n(z)|p$, and such that the factors in the middle of the chain divides neither p nor q.

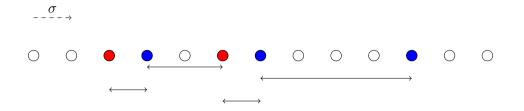
We note that $W \simeq V_{p'}$ where $p' = \frac{p}{\sigma^n(z)} \sigma^{-1}(z)$.

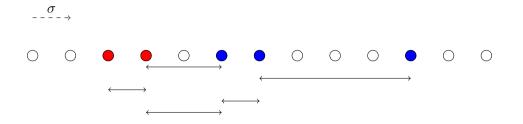
factors of a

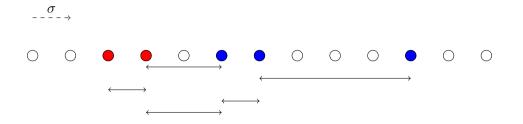












Assume that σ -orbits are infinite. Let $\langle g \rangle$ be a maximal submodule of V_p , with $g = \prod_{i=0}^{n} \sigma^i(z)$ and z|q and $\sigma^n(z)|p$. As *R*-modules we have

$$V_p/\langle g
angle \simeq R/\langle z
angle \oplus R/\langle \sigma(z)
angle \oplus \cdots \oplus R/\langle \sigma^n(z)
angle,$$

Assume that σ -orbits are infinite. Let $\langle g \rangle$ be a maximal submodule of V_p , with $g = \prod_{i=0}^n \sigma^i(z)$ and z|q and $\sigma^n(z)|p$. As *R*-modules we have

$$V_p/\langle g
angle \simeq R/\langle z
angle \oplus R/\langle \sigma(z)
angle \oplus \cdots \oplus R/\langle \sigma^n(z)
angle,$$

This is in fact isomorphic to the simple weight module $L(\mathfrak{m})$ for $\mathfrak{m} = \langle \sigma^n(z) \rangle$.

The length of the module V_p is the *number of flips* in our diagram. When *a* is square free this is equal to the number of pairs (p_i, q_i) of irreducible factors of *p* and *q* respectively where $p_i \in \sigma^{\mathbb{N}}(q_i)$.

The length of the module V_p is the *number of flips* in our diagram. When *a* is square free this is equal to the number of pairs (p_i, q_i) of irreducible factors of *p* and *q* respectively where $p_i \in \sigma^{\mathbb{N}}(q_i)$.

We get a bound

$$\operatorname{len}(V_p) \leq (\frac{\operatorname{deg}(a)}{2})^2 + 1$$

and \mathfrak{C}_1 a finite length category.

Definition

Recall that Grothendieck group $K_0(\mathfrak{C})$ is the abelian group generated by iso-classes of modules in \mathfrak{C} with relations

[A] + [C] = [B] for each short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$.

Definition

Recall that Grothendieck group $K_0(\mathfrak{C})$ is the abelian group generated by iso-classes of modules in \mathfrak{C} with relations

 $[A] + [C] = [B] \quad \text{for each short exact sequence} \quad 0 \to A \to B \to C \to 0.$

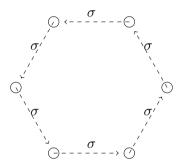
In the Grothendieck group, each module is the formal sum of its simple composition factors.

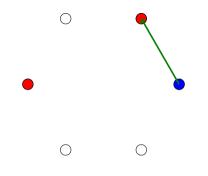
Theorem

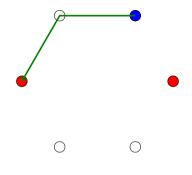
Assume that all σ -orbits are infinite. Then in $\mathcal{K}_0(\mathfrak{C})$ we have

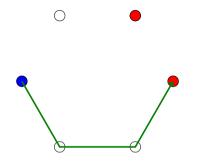
$$[V_p] = [\operatorname{soc}(V_p)] + \sum_{a \in \mathfrak{m}} n_\mathfrak{m} L(\mathfrak{m})$$

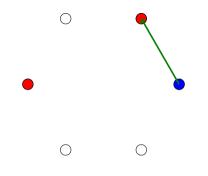
where the occurring $L(\mathfrak{m})$ have finite support and the coefficients $n_{\mathfrak{m}} \in \mathbb{N}_0$ can be expressed combinatorially.

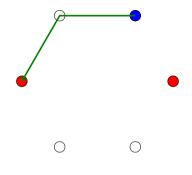


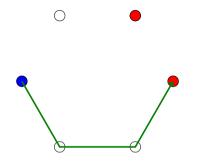


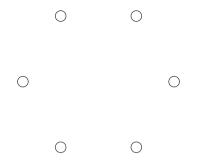












factors of
$$p$$

factors of $\sigma^{-1}(q)$

So in this case we get an infinite 3-periodic composition series

$$\cdots \subset V_p \subset V_{p''} \subset V_{p'} \subset V_p \subset V_{p''} \subset V_{p'} \subset V_p$$

Jonathan Nilsson (Linköping University)

Generalized Weyl Algebras and their representations

For a fixed $b \in \mathbb{C}$, let $R = \mathbb{C}[h]$, $\sigma(f(h)) = f(h+2)$, and $a = -\frac{1}{4}(h-b)(h+b-2)$.

For a fixed $b \in \mathbb{C}$, let $R = \mathbb{C}[h]$, $\sigma(f(h)) = f(h+2)$, and $a = -\frac{1}{4}(h-b)(h+b-2)$. Then the GWA $A = R(\sigma, a)$ is isomporphic to $U(\mathfrak{sl}_2)/\langle \theta - b(b-2) \rangle$. For a fixed $b \in \mathbb{C}$, let $R = \mathbb{C}[h]$, $\sigma(f(h)) = f(h+2)$, and $a = -\frac{1}{4}(h-b)(h+b-2)$. Then the GWA $A = R(\sigma, a)$ is isomporphic to $U(\mathfrak{sl}_2)/\langle \theta - b(b-2) \rangle$. Since *a* has two irreducible factors there are essentially 4 modules (up to unit twists):

$$\{V_{(1)}, V_{(h-b)(h+b-2)}, V_{(h-b)}, V_{(h+b-2)}\}.$$

For a fixed $b \in \mathbb{C}$, let $R = \mathbb{C}[h]$, $\sigma(f(h)) = f(h+2)$, and $a = -\frac{1}{4}(h-b)(h+b-2)$. Then the GWA $A = R(\sigma, a)$ is isomporphic to $U(\mathfrak{sl}_2)/\langle \theta - b(b-2) \rangle$. Since *a* has two irreducible factors there are essentially 4 modules (up to unit twists):

$$\{V_{(1)}, V_{(h-b)(h+b-2)}, V_{(h-b)}, V_{(h+b-2)}\}.$$

Their submodule structure depends on the σ -orbits, and we note that

$$\sigma^{k}(h-b) = h+b-2 \Leftrightarrow h-b+2k = h+b-2 \Leftrightarrow k = b-1$$

For a fixed $b \in \mathbb{C}$, let $R = \mathbb{C}[h]$, $\sigma(f(h)) = f(h+2)$, and $a = -\frac{1}{4}(h-b)(h+b-2)$. Then the GWA $A = R(\sigma, a)$ is isomporphic to $U(\mathfrak{sl}_2)/\langle \theta - b(b-2) \rangle$. Since *a* has two irreducible factors there are essentially 4 modules (up to unit twists):

$$\{V_{(1)}, V_{(h-b)(h+b-2)}, V_{(h-b)}, V_{(h+b-2)}\}.$$

Their submodule structure depends on the σ -orbits, and we note that

$$\sigma^{k}(h-b) = h+b-2 \Leftrightarrow h-b+2k = h+b-2 \Leftrightarrow k = b-1$$

So all four modules are simple unless $b \in \mathbb{Z}$, and for $b \in \mathbb{N}$ we have a composition series $\{0\} \subset V_{(h+b-2)} \subset V_{(h-b)}$ where the simple quotient is a *b*-dimensional simple weight module.

Thanks!