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Conventions

All rings are unital. Not neccessarily associative.
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Algebraic geometry motivation

Suppose we have a set, P, of polynomials in C[x1, . . . , xn] and we
are interested in the set of common zeroes of polynomials in P.
Since C[x1, . . . , xn] is Noetherian we can assume P is a finite set.
This is original motivation for Hilbert’s basis theorem.
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Theorem
If R is an associative, left (right) Noetherian ring then R[x ] is left
(right) Noetherian.

We will describe some generalizations of this theorem.
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Ore extensions

If R is an associative ring then the Ore extension R[x ; σ, δ] means
the associative ring generated by R and x , such that
xr = σ(r)x + δ(r) for all r ∈ R, where σ is a endomorphism and δ
satisfies two rules:

δ(r + s) = δ(r) + δ(s)
δ(rs) = σ(r)δ(s) + δ(r)s.

Every element of R[x ; σ, δ] can be uniquely written as
∑

rix i for
some ri ∈ R.
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Examples

The polynomial ring C[y ] is the Ore extension C[y ; id, 0].

The first Weyl algebra is the Ore extension C[y ][x ; id, ∂
∂y ].
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Hilbert basis theorem

The following generalization of Hilbert’s basis theorem is
well-known.
Theorem
If R is a an associative, left (right) Noetherian ring and σ is an
automorphism of R then R[x ; σ, δ] is left (right) Noetherian.
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Non-associative Ore extensions

Let R be a non-associative ring, let σ and δ be additive maps such
that σ(1) = 1 and δ(1) = 0. We equip R[X ] with a new
multiplication.

The ring structure on R[X ; σ, δ] is defined on monomials by

aXm · bXn =
∑
i∈N

aπm
i (b)X i+n, (1)

for a, b ∈ R and m, n ∈ N, where πm
i denotes the sum of all the(m

i
)

possible compositions of i copies of σ and m − i copies of δ in
arbitrary order.
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Non-associative Hilbert basis theorem

Proposition (Bäck and R., 2022)
Let R be a unital, non-associative ring, σ an automorphism and δ
a σ-derivation on R. If R is right (left) noetherian, then so is
R[X ; σ, δ].
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Quaternion example

Given a unital and associative algebra A with product · over a field
of characteristic different from two, one may define a unital and
non-associative algebra A+ by using the Jordan product
{·, ·} : A+ → A+ given by {a, b} := 1

2 (a · b + b · a) for any
a, b ∈ A. A+ is then a Jordan algebra, i.e. a commutative algebra
where any two elements a and b satisfy the Jordan identity,
{{a, b}{a, a}} = {a, {b, {a, a}}}.

Example
Let σ be the automorphism on H defined by σ(i) = −i , σ(j) = k,
and σ(k) = j . Any automorphism on H is also an automorphism
on H+, and hence H+ [X ; σ, 0H] is a unital, non-associative Ore
extension where e.g. X · i = −iX , X · j = kX , and X · k = jX .
H+ [X ; σ, 0H] is then noetherian.
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Octonic example

Example

For R any non-associative ring, the non-associative Weyl algebra
over R is the iterated, unital, non-associative Ore extension
R[Y ][X ; idR , δ] where δ : R[Y ] → R[Y ] is an R-linear map such
that δ(1) = 0. Considering O as a ring, the unital, non-associative
Ore extension of O in the indeterminate Y is the unital and
non-associative polynomial ring O[Y ; idO, 0O], for which we write
O[Y ]. Let δ : O[Y ] → O[Y ] be the O-linear map defined on
monomials by δ (aY m) = maY m−1 for arbitrary a ∈ O and m ∈ N,
with the interpretation that 0aY −1 is 0. One readily verifies that δ
is an O-linear derivation on O[Y ], and δ(1) = 0. We thus define
the Weyl algebra over the octonions, or the octonionic Weyl
algebra, as O[Y ][X ; idO[Y ], δ] where δ is said derivation. Hence, in
O[Y ][X ; idO[Y ], δ], X · Y = YX − 1. The octonionic Weyl algebra
is noetherian.
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Hilbert’ basis theorem again

Note that our assumption on σ and δ when formulating Hilbert’s
basis theorem mirrored the associative case, so non-associativity
came only from base ring R. Can we remove that assumption?

Theorem (Bäck and R., 2024)
Let R be a unital, non-associative ring with an additive bijection σ
that respects 1 and an additive map δ such that δ(1) = 0. If R is
right Noetherian, then so is R[X ; σ, δ].

Proof is similar to the associative case. In associative case one can
prove left case by passing to the opposite ring.
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It turns out that the left version of HBT does not hold in the
non-associative case.

We give a counterexample where R is a polynomial ring over a
field and R[X ; σ, 0] is not left Noetherian.
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Counterexample

Example
Let R = K [Y , Z ] where K is a field. We will define an additive
bijection, σ, such that σ(1) = 1 and σ(Y iZ j) = Y 2iZ j if i > 0.

Then we set T = R[X ; σ, 0]. The element Y generates an ideal I
in R. We will see that the following ideal in T is not finitely
generated as a left ideal:

J =

∑
i∈N

riX i ∈ T : ri ∈ I for all i

 .

Let us fill in some details.
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Counterexample continued

Example

We first give a complete definition of the additive bijection σ. Set
U := {1, 3, 5, . . .}, and let V be the set U × N. Then there exist
bijections f : U → {1, 2, 3, . . .} and
g = (g1, g2) : {2, 4, 6, . . .} → V . Define a map σ on the monomials
of R as follows: σ(1) = 1, σ(Y iZ j) = Y 2iZ j if i > 0,
σ(Z j) = Z f (j) if j is odd, and σ(Z j) = Y g1(j)Z g2(j) if j is even.
Extend σ K -linearly to all polynomials in K [Y , Z ]. Then σ is an
additive bijection that respects 1.
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Counterexample continued

Example
Note that the ideal I generated by Y is mapped to the ideal
generated by Y 2 by σ. Set T := R[X ; σ] and let
J = {

∑
i∈N riX i ∈ T : ri ∈ I for all i}. Then J is an ideal of T . We

claim that J is not finitely generated as a left ideal.
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Counterexample concluded

Example
For suppose that J is generated as a left ideal by p1, p2, . . . , pn for
some n. Let m be the maximal degree in X of p1, p2, . . . , pn. Then
YXm+1 is in the left ideal generated by these generators. So there
are si , ti ,1, ti ,2, . . . ∈ T such that
YXm+1 =

∑n
i=1 sipi +

∑n
i=1 ti ,1(ti ,2pi) + . . .. There must exist

terms on the right of degree at least m + 1. Note that if a term on
the right has degree m + 1, then its coefficients belong to the ideal
generated by Y 2. This would mean that the coefficient on the left
of degree m + 1 also belongs to the ideal of R generated by Y 2.
This is a contradiction, so there cannot exist such a finite set of
generators.
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We have also proven some versions of Hilbert’s basis theorem for
other types of non-associative rings.
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Laurent polynomial rings

A Laurent polynomial ring, R[x±], where R is an associative ring,
consists of elements

∑
i∈Z rix i , where only finitely many ri are

non-zero, but we allow negative powers. Addition and
multiplication is defined in the obvious way with x central. It is the
localisation of R[x ] with respect to the powers of x .
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Skew Laurent polynomial rings

A generalization of Laurent polynomials rings, similiar in spirit to
Ore extensions, are the skew Laurent polynomial rings, R[x±; σ].
The elements are the same as in R[x±] but the multiplication rule
is:

axmbxn = aσm(b)xn+m.

In the associative case, R is an associative ring and σ is an
automorphism. We defined non-assocative Ore extensions by
allowing R to be non-associative and only requiring that σ is a
bijection such that σ(1) = 1.
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Theorem

Let R be a unital, non-associative ring with an additive bijection σ
that respects 1. If R is left (right) Noetherian, then so is R[X±; σ].

This is a generalization of an associative result. Note no left-right
assymmetry. Proof is an adaptation of a proof for group-graded
rings by Bell.
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We can relate the ideals of a non-associative skew Laurent
polynomial ring to a subring that is a non-associative Ore
extension.
Proposition

Let R be a unital, non-associative ring with an additive bijection σ
that respects 1. Set S := R[X±; σ] and T := R[X ; σ]. If I is a left
ideal of S, then I = S(I ∩ T ). If I is a right ideal of S, then
I = (I ∩ T )S.

This can be used to give an alternative proof for the right case of
skew Laurent polynomial rings.
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We also define non-associative skew power series rings, R[[X ; σ]],
and non-associative skew Laurent series rings, R((X ; σ)).

Theorem

Let R be a unital, associative ring with an additive bijection σ that
respects 1. If R is right Noetherian, then so are R[[X ; σ]] and
R((X ; σ)).

Can one generalize the above two theorems for R non-associative?
Can one prove a left version of the above two theorems?

Johan Richter Non-associative Hilbert’s basis theorems



References I
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