Non-associative Hilbert's basis theorems

Johan Richter

BTH

SNAG 2025, March 27

Joint work with Per Bäck. Published as "Non-associative versions of Hilbert's basis theorem" in Colloquium Mathematicum.

All rings are unital. Not neccessarily associative.

Suppose we have a set, P, of polynomials in $\mathbb{C}[x_1, \ldots, x_n]$ and we are interested in the set of common zeroes of polynomials in P. Since $\mathbb{C}[x_1, \ldots, x_n]$ is Noetherian we can assume P is a finite set. This is original motivation for Hilbert's basis theorem.

Theorem

If R is an associative, left (right) Noetherian ring then R[x] is left (right) Noetherian.

We will describe some generalizations of this theorem.

If *R* is an associative ring then the *Ore extension* $R[x; \sigma, \delta]$ means the associative ring generated by *R* and *x*, such that $xr = \sigma(r)x + \delta(r)$ for all $r \in R$, where σ is a endomorphism and δ satisfies two rules:

• $\delta(r+s) = \delta(r) + \delta(s)$

• $\delta(rs) = \sigma(r)\delta(s) + \delta(r)s.$

Every element of $R[x; \sigma, \delta]$ can be uniquely written as $\sum r_i x^i$ for some $r_i \in R$.

The polynomial ring $\mathbb{C}[y]$ is the Ore extension $\mathbb{C}[y; id, 0]$.

The first Weyl algebra is the Ore extension $\mathbb{C}[y][x; \mathrm{id}, \frac{\partial}{\partial y}]$.

The following generalization of Hilbert's basis theorem is well-known.

Theorem

If R is a an associative, left (right) Noetherian ring and σ is an automorphism of R then $R[x; \sigma, \delta]$ is left (right) Noetherian.

Let R be a non-associative ring, let σ and δ be additive maps such that $\sigma(1) = 1$ and $\delta(1) = 0$. We equip R[X] with a new multiplication.

The ring structure on $R[X; \sigma, \delta]$ is defined on monomials by

$$aX^m \cdot bX^n = \sum_{i \in \mathbb{N}} a\pi_i^m(b)X^{i+n}, \tag{1}$$

for $a, b \in R$ and $m, n \in \mathbb{N}$, where π_i^m denotes the sum of all the $\binom{m}{i}$ possible compositions of *i* copies of σ and m - i copies of δ in arbitrary order.

Proposition (Bäck and R., 2022)

Let R be a unital, non-associative ring, σ an automorphism and δ a σ -derivation on R. If R is right (left) noetherian, then so is $R[X; \sigma, \delta]$.

Given a unital and associative algebra A with product \cdot over a field of characteristic different from two, one may define a unital and non-associative algebra A^+ by using the Jordan product $\{\cdot, \cdot\}: A^+ \to A^+$ given by $\{a, b\} := \frac{1}{2} (a \cdot b + b \cdot a)$ for any $a, b \in A$. A^+ is then a Jordan algebra, i.e. a commutative algebra where any two elements a and b satisfy the Jordan identity, $\{\{a, b\}\{a, a\}\} = \{a, \{b, \{a, a\}\}\}.$

Example

Let σ be the automorphism on \mathbb{H} defined by $\sigma(i) = -i$, $\sigma(j) = k$, and $\sigma(k) = j$. Any automorphism on \mathbb{H} is also an automorphism on \mathbb{H}^+ , and hence $\mathbb{H}^+[X; \sigma, 0_{\mathbb{H}}]$ is a unital, non-associative Ore extension where e.g. $X \cdot i = -iX$, $X \cdot j = kX$, and $X \cdot k = jX$. $\mathbb{H}^+[X; \sigma, 0_{\mathbb{H}}]$ is then noetherian.

For R any non-associative ring, the non-associative Weyl algebra over R is the iterated, unital, non-associative Ore extension $R[Y][X; id_R, \delta]$ where $\delta \colon R[Y] \to R[Y]$ is an *R*-linear map such that $\delta(1) = 0$. Considering \mathbb{O} as a ring, the unital, non-associative Ore extension of \mathbb{O} in the indeterminate Y is the unital and non-associative polynomial ring $\mathbb{O}[Y; \mathrm{id}_{\mathbb{O}}, 0_{\mathbb{O}}]$, for which we write $\mathbb{O}[Y]$. Let $\delta \colon \mathbb{O}[Y] \to \mathbb{O}[Y]$ be the \mathbb{O} -linear map defined on monomials by $\delta(aY^m) = maY^{m-1}$ for arbitrary $a \in \mathbb{O}$ and $m \in \mathbb{N}$, with the interpretation that $0aY^{-1}$ is 0. One readily verifies that δ is an \mathbb{O} -linear derivation on $\mathbb{O}[Y]$, and $\delta(1) = 0$. We thus define the Weyl algebra over the octonions, or the octonionic Weyl algebra, as $\mathbb{O}[Y][X; \mathrm{id}_{\mathbb{O}[Y]}, \delta]$ where δ is said derivation. Hence, in $\mathbb{O}[Y][X; \mathrm{id}_{\mathbb{O}[Y]}, \delta], X \cdot Y = YX - 1$. The octonionic Weyl algebra is noetherian.

Note that our assumption on σ and δ when formulating Hilbert's basis theorem mirrored the associative case, so non-associativity came only from base ring R. Can we remove that assumption?

Theorem (Bäck and R., 2024)

Let R be a unital, non-associative ring with an additive bijection σ that respects 1 and an additive map δ such that $\delta(1) = 0$. If R is right Noetherian, then so is $R[X; \sigma, \delta]$.

Proof is similar to the associative case. In associative case one can prove left case by passing to the opposite ring.

It turns out that the left version of $\ensuremath{\mathsf{HBT}}$ does not hold in the non-associative case.

We give a counterexample where R is a polynomial ring over a field and $R[X; \sigma, 0]$ is not left Noetherian.

Let R = K[Y, Z] where K is a field. We will define an additive bijection, σ , such that $\sigma(1) = 1$ and $\sigma(Y^i Z^j) = Y^{2i} Z^j$ if i > 0.

Then we set $T = R[X; \sigma, 0]$. The element Y generates an ideal I in R. We will see that the following ideal in T is not finitely generated as a left ideal:

$$J = \left\{ \sum_{i \in \mathbb{N}} r_i X^i \in T : r_i \in I \text{ for all } i \right\}.$$

Let us fill in some details.

We first give a complete definition of the additive bijection σ . Set $U := \{1, 3, 5, \ldots\}$, and let V be the set $U \times \mathbb{N}$. Then there exist bijections $f : U \to \{1, 2, 3, \ldots\}$ and $g = (g_1, g_2) : \{2, 4, 6, \ldots\} \to V$. Define a map σ on the monomials of R as follows: $\sigma(1) = 1$, $\sigma(Y^i Z^j) = Y^{2i} Z^j$ if i > 0, $\sigma(Z^j) = Z^{f(j)}$ if j is odd, and $\sigma(Z^j) = Y^{g_1(j)} Z^{g_2(j)}$ if j is even. Extend σ K-linearly to all polynomials in K[Y, Z]. Then σ is an additive bijection that respects 1.

Note that the ideal *I* generated by *Y* is mapped to the ideal generated by Y^2 by σ . Set $T := R[X; \sigma]$ and let $J = \{\sum_{i \in \mathbb{N}} r_i X^i \in T : r_i \in I \text{ for all } i\}$. Then *J* is an ideal of *T*. We claim that *J* is not finitely generated as a left ideal.

For suppose that J is generated as a left ideal by p_1, p_2, \ldots, p_n for some *n*. Let *m* be the maximal degree in X of p_1, p_2, \ldots, p_n . Then YX^{m+1} is in the left ideal generated by these generators. So there are $s_i, t_{i,1}, t_{i,2}, \ldots \in T$ such that $YX^{m+1} = \sum_{i=1}^{n} s_i p_i + \sum_{i=1}^{n} t_{i,1}(t_{i,2}p_i) + \dots$ There must exist terms on the right of degree at least m + 1. Note that if a term on the right has degree m + 1, then its coefficients belong to the ideal generated by Y^2 . This would mean that the coefficient on the left of degree m+1 also belongs to the ideal of R generated by Y^2 . This is a contradiction, so there cannot exist such a finite set of generators.

We have also proven some versions of Hilbert's basis theorem for other types of non-associative rings.

A Laurent polynomial ring, $R[x^{\pm}]$, where R is an associative ring, consists of elements $\sum_{i \in \mathbb{Z}} r_i x^i$, where only finitely many r_i are non-zero, but we allow negative powers. Addition and multiplication is defined in the obvious way with x central. It is the localisation of R[x] with respect to the powers of x.

A generalization of Laurent polynomials rings, similiar in spirit to Ore extensions, are the skew Laurent polynomial rings, $R[x^{\pm}; \sigma]$. The elements are the same as in $R[x^{\pm}]$ but the multiplication rule is:

$$ax^m bx^n = a\sigma^m(b)x^{n+m}.$$

In the associative case, R is an associative ring and σ is an automorphism. We defined non-assocative Ore extensions by allowing R to be non-associative and only requiring that σ is a bijection such that $\sigma(1) = 1$.

Theorem

Let R be a unital, non-associative ring with an additive bijection σ that respects 1. If R is left (right) Noetherian, then so is $R[X^{\pm}; \sigma]$.

This is a generalization of an associative result. Note no left-right assymmetry. Proof is an adaptation of a proof for group-graded rings by Bell.

We can relate the ideals of a non-associative skew Laurent polynomial ring to a subring that is a non-associative Ore extension.

Proposition

Let *R* be a unital, non-associative ring with an additive bijection σ that respects 1. Set $S := R[X^{\pm}; \sigma]$ and $T := R[X; \sigma]$. If *I* is a left ideal of *S*, then $I = S(I \cap T)$. If *I* is a right ideal of *S*, then $I = (I \cap T)S$.

This can be used to give an alternative proof for the right case of skew Laurent polynomial rings.

We also define non-associative skew power series rings, $R[[X; \sigma]]$, and non-associative skew Laurent series rings, $R((X; \sigma))$.

Theorem

Let R be a unital, associative ring with an additive bijection σ that respects 1. If R is right Noetherian, then so are $R[[X;\sigma]]$ and $R((X;\sigma))$.

Can one generalize the above two theorems for R non-associative? Can one prove a left version of the above two theorems?

- Bäck, P. and Richter, J.: Hilbert's basis theorem for non-associative and hom-associative Ore extensions, Algebr. Represent. Theory (2022).
- P. Bäck and J. Richter, Non-associative versions of Hilbert's basis theorem, Colloquium Mathematicum, 175(1) (2024), 135–145
- Bell, A. D.: Localization and ideal theory in Noetherian strongly group-graded rings, J. Algebra **105**, 76–115 (1987).
- K. R. Goodearl and R. B. Warfield, An Introduction to Noncommutative Noetherian Rings, 2nd edn., London Mathematical Society Student Texts, Vol. 61 (Cambridge University Press, Cambridge, 2004).

O. Ore, Theory of Non-Commutative Polynomials, Ann. Math. 34, 480–508 (1933).