Connections in Noncommutative Riemannian Geometry

Joakim Arnlind Linköping University

SNAG7 Karlskrona, 2025-03-27

This talk is based on:

Noncommutative Riemannian geometry of Kronecker algebras J. A., J. Geom. Phys 199, 2024.

On the existence of noncommutative Levi-Civita connections in derivation based calculi J. A., V. Hildebrandsson, *(In preparation.)*

Why connections?

- A connection on a differentiable manifold prescribes a way of differentiating vector fields (or, more generally, sections of a vector bundle).
- Connections play a fundamental role in differentiable geometry and can give structural information of the underlying manifold.
- General relativity is based on (pseudo-)Riemannian geometry, and geometry of space time is intimately connected to the Levi-Civita connection.
- So called gauge theories in physics use connections to describe interaction of fundamental forces.
- We would like to understand properties of a theory of connections in noncommutative geometry.
- In particular, we are interested in the existence of torsion free connections compatible with a metric, so called Levi-Civita connections.

Noncommutative differential forms

•
$$\mathcal{A}$$
 *-algebra over \mathbb{C} (functions)

- \mathfrak{g} (*-closed) Lie algebra of derivations on \mathcal{A} (vector fields)
- $\overline{\Omega}_{\mathfrak{g}}^{k}$ bimodule of $Z(\mathcal{A})$ -multilinear alternating maps $\omega : \mathfrak{g}^{k} \to \mathcal{A}$. (differential k-forms)
- For $\omega \in \overline{\Omega}_{\mathfrak{g}}^{k}$ and $\tau \in \overline{\Omega}_{\mathfrak{g}}^{l}$ one defines $\omega \tau \in \overline{\Omega}_{\mathfrak{g}}^{k+l}$ by antisymmetrization over the arguments.
- Exterior derivative: $d: \bar{\Omega}_{\mathfrak{g}}^k \rightarrow \bar{\Omega}_{\mathfrak{g}}^{k+1}$

$$\begin{aligned} & da(\partial) = \partial a & \text{for } a \in \mathcal{A} = \bar{\Omega}^0_{\mathfrak{g}} \\ & d\omega(\partial_1, \partial_2) = \partial_1 \omega(\partial_2) - \partial_2 \omega(\partial_1) - \omega([\partial_1, \partial_2]) & \text{for } \omega \in \bar{\Omega}^1_{\mathfrak{g}} \end{aligned}$$

Noncommutative differential forms

- $\bar{\Omega}_{\mathfrak{g}}$ is a differential graded algebra.
- We will consider a differential subalgebra of $\bar{\Omega}_{\mathfrak{g}}$, called the restricted calculus, given by

$$\Omega_{\mathfrak{g}}^{k} = \{a_{0} da_{1} \cdots da_{k} : a_{i} \in \mathcal{A} \text{ for } i = 1, \dots, k\}.$$

• As "metrics" on $\Omega^1_{\mathfrak{g}}$, we consider hermitian forms $h: \Omega^1_{\mathfrak{g}} \times \Omega^1_{\mathfrak{g}} \to \mathcal{A}$:

$$h(a\omega,\eta) = ah(\omega,\eta)$$
 and $h(\omega,\eta)^* = h(\eta,\omega)$

which we often assume to be invertible in the sense that $\hat{h}: \Omega^1_{\mathfrak{g}} \to (\Omega^1_{\mathfrak{g}})^*$, defined by $\hat{h}(\omega)(\eta) = h(\eta, \omega)$, is a bijection.

Some notation

Definition

Let \mathcal{A}, \mathcal{B} be rings and let M be a left \mathcal{A} -module, let N a right \mathcal{B} -module and let S be a $(\mathcal{A}, \mathcal{B})$ -bimodule. Define

 $\operatorname{Hom}_{\mathcal{A},\mathcal{B}}(M \times N,S)$

as the set of biadditive maps $f: M \times N \to S$ such that f(am, nb) = af(m, n)b for $m \in M$, $n \in N$, $a \in A$ and $b \in B$. Moreover, if A = B then we write

 $\operatorname{Hom}_{\mathcal{A}}(M \times N, S) \equiv \operatorname{Hom}_{\mathcal{A}, \mathcal{A}}(M \times N, S).$

If \mathcal{A} is a *-algebra and M is a left \mathcal{A} -module then $m \cdot a = a^*m$ defines a right \mathcal{A} -module structure on M. We denote the right \mathcal{A} -module obtained from M in this way by \hat{M} .

g-connections

Definition

Let \mathcal{A} be a *-algebra and let $\mathfrak{g} \subseteq \text{Der}(\mathcal{A})$ be a Lie algebra. A left \mathfrak{g} -connection on a left \mathcal{A} -module M is a map $\nabla : M \times \mathfrak{g} \to M$ such that

$$\nabla_{z\partial}m = z\nabla_{\partial}m$$

for $m, m' \in M$, $\partial, \partial' \in \mathfrak{g}$, $a \in \mathcal{A}$, and $z \in Z(\mathcal{A})$.

Note that $\nabla \in \operatorname{Hom}_{\mathbb{C}, Z(\mathcal{A})}(M \times \mathfrak{g}, M)$

Derivation based calculus

Definition

Let \mathcal{A} be a *-algebra and let $\mathfrak{g} \subseteq \text{Der}(\mathcal{A})$ be a Lie algebra. A left \mathcal{A} -module M is called a left \mathfrak{g} -connection module if there exists a left \mathfrak{g} -connection $\nabla : M \times \mathfrak{g} \to M$.

The next definition introduces the noncommutative object that we think of as an analogue of a differentiable manifold.

Definition

A (left) derivation based calculus is a pair $(\mathcal{A}, \mathfrak{g})$ where \mathcal{A} is a unital *-algebra over \mathbb{C} and $\mathfrak{g} \subseteq \text{Der}(\mathcal{A})$ is a *-closed Lie algebra such that $\Omega^1_{\mathfrak{g}}$ is a (left) \mathfrak{g} -connection module.

Regular connections

Let $(\mathcal{A},\mathfrak{g})$ be (left) derivation based calculus, and let ∇^0 be a \mathfrak{g} -connection on $\Omega^1_{\mathfrak{g}}$. Defining

$$(\widetilde{
abla}_{\partial\omega})(\partial') = (
abla_{\partial'}\omega)(\partial) + d\omega(\partial,\partial')$$

one can check that $\widetilde{
abla}$ satisfies the requirements of a left connection.

Moreover, it is clear that $\nabla_{\partial}\omega \in \overline{\Omega}^1_{\mathfrak{g}}$, but is not guaranteed that $\widetilde{\nabla}_{\partial}\omega \in \Omega^1_{\mathfrak{g}}$. The problem lies with

$$\eta(\partial') := (\nabla_{\partial'}\omega)(\partial)$$

considered as an element $\eta \in \overline{\Omega}^1_{\mathfrak{g}}$ for fixed $\omega \in \Omega^1_{\mathfrak{g}}$ and $\partial \in \mathfrak{g}$.

Regular connections

In light of the "problem" above, we introduce the following definition.

Definition

Let $(\mathcal{A}, \mathfrak{g})$ be a derivation based calculus and let ∇ be a connection on $\Omega^1_{\mathfrak{g}}$. The connection is called regular if the associated connection

$$(\widetilde{
abla}_{\partial\omega})(\partial') = (
abla_{\partial'}\omega)(\partial) + d\omega(\partial,\partial').$$

is a (left) connection on $\Omega^1_{\mathfrak{g}}$.

We denote the set of regular connections on $\Omega^1_{\mathfrak{g}}$ by $\mathscr{C}^{\operatorname{Reg}}_{\mathfrak{g}}(\Omega^1_{\mathfrak{g}})$.

Torsion free connections

A connection ∇ is called *torsion free* if

$$(\nabla_{\partial}\omega)(\partial') - (\nabla_{\partial'}\omega)(\partial) = d\omega(\partial,\partial')$$

for all $\partial, \partial' \in \mathfrak{g}$ and $\omega \in \Omega^1_{\mathfrak{g}}$, which is equivalent to $\nabla = \widetilde{\nabla}$. That is, a torsion free connection is regular.

Introduce

$$\wedge, s: \mathsf{Hom}_{\mathbb{C}, Z(\mathcal{A})}(\Omega^1_\mathfrak{g} \times \mathfrak{g}, \bar{\Omega}^1_\mathfrak{g}) \to \mathsf{Hom}_{\mathbb{C}, Z(\mathcal{A})}(\Omega^1_\mathfrak{g} \times \mathfrak{g}, \bar{\Omega}^1_\mathfrak{g})$$

as

$$(\wedge W)(\omega, \partial_1)(\partial_2) = W(\omega, \partial_1)(\partial_2) - W(\omega, \partial_2)(\partial_1) s(W)(\omega, \partial_1)(\partial_2) = W(\omega, \partial_1)(\partial_2) + W(\omega, \partial_2)(\partial_1)$$

from which it follows that $s \circ \land = \land \circ s = 0$.

Joakim Arnlind

Torsion free connections

Considering $d \in \operatorname{Hom}_{\mathbb{C}, Z(\mathcal{A})}(\Omega^1_{\mathfrak{g}} \times \mathfrak{g}, \overline{\Omega}^1_{\mathfrak{g}})$ via

$$d(\omega,\partial)(\partial') = d\omega(\partial,\partial'),$$

(satisfying $s \circ d = 0$ and $\wedge d = 2d$) one can write the torsion free condition as

$$d - \wedge \nabla = 0$$

now considered as an equation for maps in $\operatorname{Hom}_{\mathbb{C},Z(\mathcal{A})}(\Omega^1_{\mathfrak{g}} \times \mathfrak{g}, \overline{\Omega}^1_{\mathfrak{g}}).$

Construction of torsion free connections

Let $(\mathcal{A}, \mathfrak{g})$ be a derivation based calculus, and let ∇^0 be a *regular* \mathfrak{g} -connection on $\Omega^1_{\mathfrak{g}}$. We would like to construct a torsion free connection from ∇^0 . To this end, define

$$abla = rac{1}{2}ig(d+s(
abla^0)ig).$$

One can easily check that ∇ satisfies the necessary conditions for a left connection and, due to the regularity of ∇^0 , it is a connection on $\Omega^1_{\mathfrak{g}}$. One checks that

$$\wedge \nabla = \frac{1}{2} \wedge d + \frac{1}{2} (\wedge \circ s) (\nabla^0) = d,$$

implying that ∇ is torsion free. (In fact, all torsion free connections can be obtained in this way.)

Existence of torsion free connections

Proposition

Let $(\mathcal{A}, \mathfrak{g})$ be a derivation based calculus. There exists a torsion free connection on $\Omega^1_{\mathfrak{g}}$ if and only if $\mathscr{C}_{\mathfrak{g}}^{\operatorname{Reg}}(\Omega^1_{\mathfrak{g}}) \neq \emptyset$.

As we have noted, such a connection is obtained from $abla^0 \in \mathscr{C}^{\operatorname{Reg}}_\mathfrak{g}(\Omega^1_\mathfrak{g})$ as

$$\nabla = \frac{1}{2} \big(d + s(\nabla^0) \big).$$

Given a hermitian form h and $\alpha \in \operatorname{Hom}_{\mathbb{C}, Z(\mathcal{A})}(\Omega^1_{\mathfrak{g}} \times \mathfrak{g}, \Omega^1_{\mathfrak{g}})$ we define $h_{\alpha}(\omega, \eta) \in \overline{\Omega}^1_{\mathfrak{g}}$ as

$$h_{\alpha}(\omega,\eta)(\partial) = h(\alpha(\omega,\partial),\eta)$$

for $\omega, \eta \in \Omega^1_{\mathfrak{g}}$ and $\partial \in \mathfrak{g}$, implying that $h_{\alpha} \in \operatorname{Hom}_{\mathbb{C},\mathcal{A}}(\Omega^1_{\mathfrak{g}} \times \hat{\Omega}^1_{\mathfrak{g}}, \overline{\Omega}^1_{\mathfrak{g}})$. Moreover, introduce $* : \operatorname{Hom}_{\mathbb{C},\mathcal{A}}(\Omega^1_{\mathfrak{g}} \times \hat{\Omega}^1_{\mathfrak{g}}, \overline{\Omega}^1_{\mathfrak{g}}) \to \operatorname{Hom}_{\mathbb{C},\mathcal{A}}(\Omega^1_{\mathfrak{g}} \times \hat{\Omega}^1_{\mathfrak{g}}, \overline{\Omega}^1_{\mathfrak{g}})$ $\mathcal{L}^*(\omega, \eta) = \mathcal{L}(\eta, \omega)^*$

giving

$$h^*_{\alpha}(\omega,\eta)(\partial) = h(\omega,\alpha(\eta,\partial^*))$$

Given a hermitian form h, a connection ∇ is said to be *compatible with* h if

$$\partial h(\omega,\eta) = h(\nabla_{\partial}\omega,\eta) + h(\omega,\nabla_{\partial^*}\eta)$$

for all $\partial \in \mathfrak{g}$ and $\omega, \eta \in \Omega^1_{\mathfrak{g}}$.

One can rewrite this as a relation in $\text{Hom}_{\mathbb{C},\mathcal{A}}(\Omega^1_\mathfrak{g} \times \hat{\Omega}^1_\mathfrak{g}, \bar{\Omega}^1_\mathfrak{g})$

$$dh = h_{\nabla} + h_{\nabla}^*$$

with $dh = d \circ h$.

Given an arbitrary left connection ∇^0 , one defines $L_{\nabla^0}: \Omega^1_\mathfrak{q} \times \Omega^1_\mathfrak{q} \to \Omega^1_\mathfrak{q}$ by

$$L_{\nabla^0}(\omega,\eta)(\partial) = \frac{1}{2}dh(\omega,\eta)(\partial) + \frac{1}{2} \big(h(\nabla^0_\partial \omega,\eta) - h(\omega,\nabla^0_\partial \eta)\big)$$

for $\partial \in \mathfrak{g}$, $\omega, \eta \in \Omega^1_{\mathfrak{g}}$, and sets

$$abla_\partial \omega = \hat{h}^{-1} ig(L_{
abla^0}(\omega,\cdot)(\partial)^* ig).$$

One checks that ∇ is a connection compatible with *h*.

Proposition

Let $(\mathcal{A}, \mathfrak{g})$ be a differential calculus and let h be an invertible hermitian form on $\Omega^1_{\mathfrak{g}}$. Then there exists a connection on $\Omega^1_{\mathfrak{g}}$ compatible with h.

Summary

We introduced convenient formulations of torsion free connections:

$$\wedge \nabla - d = 0,$$

as an equation for maps in $\operatorname{Hom}_{\mathbb{C}, \mathbb{Z}(\mathcal{A})}(\Omega^1_{\mathfrak{g}} \times \mathfrak{g}, \overline{\Omega}^1_{\mathfrak{g}})$, as well as for connections compatible with hermitian forms:

$$dh = h_{\nabla} + h_{\nabla}^*$$

as maps in $\operatorname{Hom}_{\mathbb{C},\mathcal{A}}(\Omega^1_{\mathfrak{g}} \times \hat{\Omega}^1_{\mathfrak{g}}, \overline{\Omega}^1_{\mathfrak{g}}).$

Moreover, such connections are constructed by starting from an arbitrary connection ∇^0 (which needs to be regular in the torsion free case)

A natural question is if connections satisfying both conditions – so called Levi-Civita connections – exist on differential calculi. This will be the topic of Victor's talk.

Thank you!