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Preliminaries

K is a field of characteristic not equal to 2 and 3;
A is a commutative but nonassociative algebra with multiplication e over K

© © o

L(z)y ==z ey;

©

Idm(A) is the set of nonzero algebra idempotents;

given z € A, ((x)) denotes the subalgebra generated by z;

a nonasociative monomial % is an element of the multiplicative magma ((x));
O there is a natural grading on nonaasociative monomials 2®: deg : 2® — Z%;
O a linear combination of “ is a nonassociative polynomial P in z;

0 P =0is an identity on A if P(z) =0 for any = € A;

Remark

One of the most interesting features of the concepts considered below is their applications to
study of fusion rules, but we don’t consider this issue in our present talk. A part of material
below is based on my paper The universality of one half in commutative nonassociative algebras
with identities. J. Algebra, 569, 466-510, 2021.
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Preliminaries

There are two special nonassociative monomials parametrized by N:
o principal powers: z0:=1 € K, z! :==z and 2" :=zez" "1, n > 2;
@ plenary powers: zlt .= ¢ and [ .= zln—1] ¢ gln—1] > 9
Observe that
degz™ =mn, degx["] =n~1
For example,

2

z, 2=zexz, x°>=(zex)es, 2Bl = (zex)e(zex),...

A general monomial can have a very involved structure, for example
(zoz)e(((zoz)ox)ox)e (zex)) =2 e(a*exl?).

It is natural to represent monomials by binary trees, for example

z o zl3]

e N

x 23]
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There exists a one-to-one correspondence between

@ nonassociative monomials @ of degree n;

@ parenthesizations on n symbols,
0 (labeled full) binary trees with n leaves,
@ path-length sequences [k1, ..., kn] such that 37, 2% = 1. Here, k; is the number of

paths connecting the ith leaf with the parent.

2

For example, 22 @ 22 = (x @ ) ® (z ® x) is represented by the tree

x2x?

2/ \ 2
VAN

and the tree's path-length sequence (2,2, 2, 2], where Z;lzl 2% =1.

Proposition [Knuth, 2.3.4.5, M24]

Given any sequence [k1,. .., km| such that >3, 2%1 = 1 there exists a binary tree such that
[k1,...,km], maybe reordered, is its path-length sequence.
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Given a multiset A of numbers we denote by |A| = ZaeA a.

Lemma 1

(i) Let A be a multiset of cardinality at least 2 consisting of nonnegative powers of 2, and such that |A| = 2%
for some integer L. Then one can split A = A’ U A" into two subsets such that |A’| = |A"| = 2F—1

(ii) Let A be a multiset of cardinality at least 2 consisting of nonpositive powers of 2, and such that |A| = 1.
Then one can split A = A’ U A" into two subsets such that |A'| = |A"'| = L.

Corollary 2

Given any sequence [k1, ..., km] such that 377" | 2% = 1 there exists a binary tree such that
- k2

k1, ..., km], maybe reordered, is its path-length sequence.

Proof. (i) Let A’ C A be a proper subset such that |A’| < 2E=1 If A” = A\ A’ then
A 5= 2L—l _ ‘A" _ IAul _ 2L—l _ (2.7:1 4+ 2.—:7,,,) _ 2L—1
where the RHS is divisible by the smallest power 2™ . Then A > 2™ hence sending 2¥™ to the LHS obtain

A" U {25} = A 4+ 2™ = (2871 — A) + 2™ < 2871,

Repeating the process implies the desired conclusion in (i).
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A={(55)" (3572, (G ™7, (55)7°) satisfies |A| = & + 3%

24
N
23 23 23 24 24 24 2 2 24 2 25 25 25 2 )
N——
=1 =1 =1 1
4 4 4 4

_1
2

corresponds to the binary tree [3,3,3,4,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6]

Observe that one can shuffle some ‘branches’ such that the resulting tree will be different but still have the
same unordered path-length sequence. It is natural to call such trees by isomers.
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So what is this all about and why?...
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The Peirce polynomial

Example 1

By definition, an algebra is power-associative if any subalgebra ((z)) is associative. In the
commutative case this is equivalent to that the following identity holds:

P):=2*—2’ex?=0 (1)
Indeed, the linearization yields
2L(z)% + L(x)L(z?) — 4L(z)L(x) + L(z3®) = 0 (2)

and conversely, (2) implies (1). Next, by (1): (z?  z?) e z = = and applying (2) to z* gives
x2 e £3 = x®. This implies the desired conclusion by induction. If ¢ € Idm(A) then (2) becomes

2L(c)3 — 3L(c)% + L(c) = (2L(c) — 1)(L(c) — 1)L(c) =0 3)

the Peirce polynomial implies the Peirce spectrum

This yields the corresponding Peirce decomposition:

A:Al@Ao@A%.
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The Peirce polynomial

Example 2.

A Bernstein algebra is a commutative algebra with a nontrivial algebra homomorphism
w : A — K satisfying the following (genetic type) identity:

z? 0 z? — w(xz)?z? = 0. (4)
Then linearization yields 422 o (z @ y) — 2w(x)%x @ y — 2w(x)w(y)2z? = 0, hence
4L(x?)L(z) — 2w(z)?L(z) — 2w(z)z? @ w* = 0.
If x = c is a nonzero idempotent then w(c) =1 and
4L(c)%2 — 2L(c) — 2c @ w* = 0.
In particular, if  is an eigenvector of L(c) then

2 = 2c@w* =0.
(4L(c)* —2L(c))z = 2¢® 0

the Peirce polynomial must be zero

Vladimir G. Tkachev
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Some further examples of binomial identities

O Quasicomposition algebras:

2% — Qa)z = 0, (5)
where @ is a quadratic form.
O The Elduque-Okubo algebras:
z? e z? — N(z)z =0, (6)
where N () is a cubic form.
O The Bernstein algebras:
z2 0 22 — w(z)?z? =0, (7)

where w : A — K is a homomorphism.

O A strange identity: ) )
(@%)2 - (=?)® = 0. (8)

Observations: algebras satisfying (8):

O any algebra with A% = 0;

O any power-associative algebra (in particular, any Jordan algebra);

O any medial algebra (indeed, (z o ) @ (22 @ 22) = (z @ 22) o (x @ 2?)).
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The Peirce polynomial

f(x) is a homogeneous polynomial function of order m if Ay, f =0 and f(Ax) = A™ f(x).

We consider a commutative algebra A satisfying a homogeneous identity of the kind
P .= Z Pa(z)z® =0 (9)
«@

where ¢ () are homogeneous polynomial functions. To any such polynomial one associate the
so-called Perice polynomial (linearization evaluated at an idempotent ¢). More precisely,

Dy(P(z)) = (P, L(c)) + c® (...)
N —rt

at ¢
where o.(P, L(c)) is a certain polynomial in L(c) over K. In particular,

0c(P,L(c)) =0 on any proper eigensubspace of L(c)

Definition. Given an idempotent ¢, the Peirce polynomial o.(P;q) € K[q] is defined by
2D ba(@)z*,9) = palc)p(z®,q)
@ [e3

where p is the Peirce operator defined below.
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(i) Given a formal indeterminate g, the Peirce operator
p: (=) — Zq]
is uniquely determined by p(x, g) = 1 and the recurrence relation

p(z%2?,q) = ¢ (p(z*, q) + p(z”, q)). (10)

(ii) Alternatively, by means of the tree's path-length sequence one has an explicit expression

p([k1, k2, .o k] g) = > g"i.
i=1 )
For example, p(z®,q) = p([1,2,2],9) = ¢" + ¢° + ¢° = 2¢° + q, or
7-(2¢+1)
q-(1+1) 1
1 1
By Corollary 2 (or by induction), for any binary tree one has
1 LI |
)= =1
pa®, 5) ; ok
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Some further examples:
p(z?,q) = 2q,
p(@®,q) = 2¢° +q,
p(z*,q) =2¢° + ¢* +q, (11)
p(z* e 2?,q) = 4q?,
p((z® e z®) ez, q) = 4¢° + q.

Remark. Given a Peirce polynomial, the corresponding unordered path-length sequence can be

restored, for example,
q+4¢® = q+@P+...+¢ — [1,3,3,3,3] — ze(z?ez?)
—_——

A

(13 of 23)

orkshop on Algebra and Geometry, March 21th

G. Tkachev



Corollary 2 implies

Proposition 1

For any nonassiciative monomial x, P(z%,q) € Z*t[q] and P(z%, %) = 1. Conversely, if
Q € ZT[q] and Q(%) = 1 then there exists a monomial * such that Q(q) = P(z%,q).

Remarks

@ There is no Peirce polynomial of the kind
P(2%,q) = 3¢> + lower degree terms.

Indeed, if P(z%,q) = 3¢> + ag® + bq (the constant term must be zero because
P(z%, %) = 1), then 2a + 4b = 5, a contradiction.

O In general, the' leading coefficient must be even. For example, it easy to see that
P(z®,q) = 6¢° + lower degree terms implies 64> 4 ¢°> and uniquely determines
z® = (22 0 z2) 0 253,

O Isomeric binary trees have the same Peirce polynomial, for example (23)2 and (22)3.
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The multiplication of two monomials 2 e z# imply the operation of merging of the
corresponding Peirce polynomials P x Q.

It follows from the definition (10) that this merging (fusion) is an isotopy of the standard
associative addition, therefore the resulting operation is a medial magma. More precisely:

The set of polynomials
1
2 ={Qeztld: Q) =1}
is a medial magma with respect to
PxQ:=q (P+Q).

Indeed,
(P+Q)*x(RxT)=q*(P+Q+R+T)
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The universality of 5

Theorem 3 (V.T., J. Algebra, 2021)

Let a commutative algebra A satisfy P := 3"  ¢ao(x)z® =0 and ¢ € Idm(A). Then
p(P,3) =0

If additionally c is semi-simple and X is a simple root of the Peirce polynomial o.(P,t) then

AMA(DH)C P AWw). (12)

vEo(c),v#X

Example. For power-associative algebra identity one obtains (cf. with (3))

p(z! — 2% 0 2?,q) = (2¢° + ¢ + q) — 44 = q(q — 1)(2¢ — 1).

Vladimir G. Tkachev
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https://doi.org/10.1016/j.jalgebra.2020.10.022

Binomials

Let us consider homogeneous binomials, i.e. nonassociative polynomials with two terms with

coefficients in K. If such an algebra contains a nonzero idempotent, it is necessarily that the
identity has the form

z® — 2P =0, degz® = deg z”.
Except of (1) in degree 4, there are (g) = 3 binomials in degree 5

Spi=a® — (z2eaz?)ex

.5 2.3
Sy =z —z° ex”,

S3:= (22 ez?) ez — 2 ez =55 — Sy,
which imply respectively the corresponding Peirce polynomials
p(S1,0) = (24" +¢° +¢° +9) — (4¢° + g = ¢*(¢ — 1)(2¢ — 1)

p(S2,9) = (2¢* + ¢* + ¢® + @) — 2¢° + 39)g = q(g — 1) (g +1)(2¢ — 1)
p(S3,q9) = q(g — 1)(2¢ — 1).

Vladimir G. Tkachev
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Degenerate identities

But in degree 6, for the first time appears an nonzero identity with zero Peirce polynomial,

R:= (%% - (z2)®=0. (13)
Indeed,
p((z*)?,q) = 2p(2%,q) - ¢ = 2(2¢° + q)q
p((2%)%,q) = (p((2*)%, @) + p(z°,q)) - ¢ = (4¢° + 2q)q.

implies p(R,q) = 0.

Remarks.

0 In [V.T., 2021] we referred to such identities as degenerated identities. In particular this
implies that the Peirce spectrum is undetermined for any algebra idempotent.

O In [Varro, 2020]: such identities are called evanescent. Varro studies these in the context
of baric train algebras.
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Decomposable degenerate identities

Let w be a baric homomorphism on A and suppose A satisfy
P:=22? e 2? — 2uw(x)2® + w(z)?2? = 0.

Then P is degenerated: p(P,q) = 0. Algebras with P = 0 were studied in [Ouattara-Zitan et al.,
J. Alg., 2010] and later by Elduque and Labra [J. Alg. Appl,, 2013], where it was proven that the
‘gametization’ of the original multiplication in A to z xy = zy — %w(r)y — %w(y)x satisfies the
plenary nilpotent identity *2 %« 2*2 = 0, while A*2 # A. Note that P is decomposable:

P = (2% —w(z)z)?

Theorem (V.T., 2021)

Let A be an algebra with identity P(z) = 0 such that P = P; e P is decomposable in the free
nonassociative algebra K({(z))). Then for any nonzero idempotent ¢ of A there holds

0c(P1,3) 0c(P2, 3) = 0.
Furthermore,
0 if oc(P1, %) = 0c(P2, %) = 0 then P is a degenerated identity;
0 if gc(P, %) =0 and o.(P;, %) # 0 then o(P,c) = {0} Uo (P, ¢).
In particular, if P = P12 then the identity P is degenerated.
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Grafting

Given an algebra identity P, one frequently use its ‘derivatives’, i.e. an identity P; (normally of a
higher order) obtained from the linearization of the original identity. In this case, any algebra
satisfying P = 0 also satisfies P; = 0. We briefly consider the simplest variant of this
construction below.

Given a nonassociative polynomial, one can substitute another monomial (grafting) as follows:
3 3.\ 2
> = D(x”;y) =2ze(zey)+z°ey
replace y by z?

2

—>2zo(zom2)+x20m2:2a:4+x20x,
while
2 2,0\ _ 3 2
z° = D(z*;y) =2z ey — replacey by z — 2z ex”.

We denote this by D(z3;22), or in general by D(P; Q).
Theorem 4
P(D(P;Q),q) = p(P,q) - (p(Q,q) + (p(P, 1) — 1)p(Q; 1)).

In particular,
O The Peirce spectrum increases w.r.t. grafting.

O A grafting of a strange polynomial is a strange polynomial again.
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Definition
Two monomials £ and zf are isomeric (z® = f) if any of the following equivalent conditions
satisfied:

o pa) = p(a?).

O The unordered path-length sequences of z* and z? coincide.

(((Q A (x () x3) (%2 x*) éeff (9
[s6el55/4k6c6344443344]
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Some relevant questions

o How to characterize two isomeric monomials?

o How to classify algebras satisfying ‘strange’ identities, i.e. z® — z% = 0 for
some p(z®) = p(z?).

o What is about the simplest nontrivial case R := (2?)? — (22)3 = 0?

o Do there exist any algebras satisfying this identity distinct from medial,
power-associative or three-nilpotent ones?
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