Primeness of groupoid graded rings

Johan Öinert

The 6th SNAG meeting, Linköping, 2024-03-22

Blekinge Institute of Technology

Reference

This talk is based on the following paper:

Paula S. E. Moreira and Johan Öinert, Prime groupoid graded rings with applications to partial skew groupoid rings

To appear in Communications in Algebra.

https://doi.org/10.1080/00927872.2024.2315311

Outline

- 🕕 Background
- Groupoids and groupoid graded rings
- 3 Prime nearly epsilon-strongly groupoid graded rings
- Application: Prime groupoid rings

🕕 Background

② Groupoids and groupoid graded rings

Prime nearly epsilon-strongly groupoid graded rings

4 Application: Prime groupoid rings

Before we begin ...

In this talk, all rings are assumed to be associative, but not necessarily unital.

Reminder

A ring S is said to be prime if there are no nonzero ideals I,J of S such that $IJ=\{0\}$.

Related primeness investigations from the past

• Group rings:

```
Theorem (Connell)
```

R[G] is prime iff R is prime and G has no non-triv. finite normal subgroup.

- I. G. Connell (1963), On the group ring, Canad. J. Math. 15, 650–685.
- Unital strongly group graded rings:
 - D. S. Passman (1984), Infinite crossed products and group-graded rings, Trans. Amer. Math. Soc. 284(2), 707–727.
- (Non-unital) nearly epsilon-strongly group graded rings:
 - D. Lännström, P. Lundström, J. Öinert, S. Wagner (2021), Prime group graded rings with applications to partial crossed products and Leavitt path algebras, arXiv:2105.09224.

- Background
- ② Groupoids and groupoid graded rings
- 3 Prime nearly epsilon-strongly groupoid graded rings
- 4 Application: Prime groupoid rings

Groupoids: Conventions and notation

Throughout the rest of this talk, G denotes an arbitrary *groupoid*, i.e. a small category in which every morphism is invertible.

Notation:

- The set mor(G) will simply be denoted by G.
- Objects of G will be identified with their corresponding identity morphisms, allowing us to view the set $G_0 := ob(G)$, as a subset of G.
- The range and source maps $r, s: G \to G_0$, indicate the range (codomain) respectively source (domain) of each morphism of G.
- The set of *composable pairs* of G is denoted by

$$G^2 := \{ (g, h) \in G \times G : s(g) = r(h) \}.$$

ullet For each $e\in G_0,$ we denote the corresponding *isotropy group* by

$$G_e^e := \{ g \in G : s(g) = r(g) = e \}.$$

Groupoid graded rings

Definition

A ring S is said to be G-graded (or graded by G) if there is a collection $\{S_g\}_{g\in G}$ of additive subgroups of S such that

- $\bullet \ S = \oplus_{g \in G} S_g,$
- \bullet $S_qS_h\subseteq S_{qh}$, if $(g,h)\in G^2$, and
- $S_g S_h = \{0\}$, if $(g, h) \notin G^2$.

Examples

- Group graded rings. (Every group is a groupoid!)
- Partial skew groupoid rings
- Groupoid rings
- Leavitt path algebras graded by the "free path groupoid"
- Matrix rings. (Graded by pair groupoids.)

Before we continue: s-unitality

Reminder

A ring R is said to be s-unital if $a \in aR \cap Ra$ for every $a \in R$.

Example (A ring that is s-unital)

The ring of infinite matrices with complex entries of which only finitely many are nonzero.

Example (A ring that is NOT s-unital)

The ring $2\mathbb{Z}$.

Nearly epsilon-strong groupoid gradings

Definition (Lännström & Öinert)

Let S be a G-graded ring. We say that S is nearly epsilon-strongly G-graded if, for each $g \in G$ we have that

- ullet $S_gS_{g^{-1}}S_g=S_g$, and
- ullet $S_gS_{g^{-1}}$ is an s-unital ring.

Proposition

Let S be a G-graded ring. The following statements are equivalent:

Basic properties of nearly epsilon-strongly graded rings

Proposition

Let S be a nearly epsilon-strongly G-graded ring. The following assertions hold:

- \bullet S_e is an s-unital ring, for every $e \in G_0$.
- $0 \quad d \in d(\bigoplus_{e \in G_0} S_e) \cap (\bigoplus_{e \in G_0} S_e) d, \text{ for every } d \in S.$
- \bullet S is s-unital and $\oplus_{e \in G_0} S_e$ is an s-unital subring of S.
- Suppose that H is a subgroupoid of G. Then $\bigoplus_{h\in H} S_h$ is a nearly epsilon-strongly H-graded ring.
- The set

$$G' := \{g \in G : S_{s(g)} \neq \{0\} \text{ and } S_{r(g)} \neq \{0\}\}$$

is a subgroupoid of G.

- Background
- 2 Groupoids and groupoid graded rings
- 3 Prime nearly epsilon-strongly groupoid graded rings
- 4 Application: Prime groupoid rings

Invariance & graded ideals

Let S be a G-graded ring.

Definition

- lacktriangledown For any $g\in G$ and any subset I of S, we write $I^g:=S_{q^{-1}}IS_q$.
- ① Let H be a subgroupoid of G and let I be a subset of S. Then, I is called H-invariant if $I^g \subseteq I$ for every $g \in H$.

Definition

An ideal I of S is said to be $\operatorname{\textit{graded}}$ (or $G\operatorname{-\textit{graded}}$) if $I=\oplus_{g\in G}(I\cap S_g)$.

A correspondence

The following maps are well defined:

$$\phi: \{G\text{-graded ideals of }S\} \ni I \mapsto \\ I \cap \oplus_{e \in G_0} S_e \in \{G\text{-invariant ideals of } \oplus_{e \in G_0} S_e\}$$

$$\psi: \{G\text{-invariant ideals of} \oplus_{e \in G_0} S_e\} \ni J \mapsto SJS \in \{G\text{-graded ideals of } S\}$$

Theorem

Let S be a nearly epsilon-strongly G-graded ring. The map ϕ defines a bijection between the set of G-graded ideals of S and the set of G-invariant ideals of $\bigoplus_{e \in G_0} S_e$. The inverse of ϕ is given by ψ .

Graded primeness of groupoid graded rings

Definition

Let S be a G-graded ring.

- $\bigoplus_{e \in G_0} S_e$ is said to be G-prime if there are no nonzero G-invariant ideals I,J of $\bigoplus_{e \in G_0} S_e$ such that $IJ = \{0\}$.

Theorem

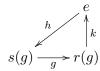
Let S be a nearly epsilon-strongly G-graded ring. Then S is graded prime if, and only if, $\bigoplus_{e \in G_0} S_e$ is G-prime.

Definition

Let S be a G-graded ring. An element $e \in G_0'$ is said to be a support-hub if for every nonzero $a_g \in S_g$, with $g \in G$, there are $h, k \in G$ such that $s(h) = e, \ r(k) = e$, and $a_g S_h$ and $S_k a_g$ are both nonzero.

Remark

lacktriangle Suppose that $e \in G_0'$ is a support-hub and that $a_g \in S_g$ is nonzero, for some $g \in G$. Notice that there are $h, k \in G$ as in the following diagram.



Notice that, if S is a ring which is nearly epsilon-strongly graded by a group G, then the identity element e of G is always a support-hub.

Support-hubs in relation to primeness

Proposition

Let S be a G-graded ring which is s-unital. If S is graded prime, then every $e \in G'_0$ is a support-hub.

Recall: G is *connected*, if $\forall e, f \in G_0$, $\exists g \in G$ such that s(g) = e and r(g) = f.

Proposition

Let S be a G-graded ring which is s-unital. The following assertions hold:

- lacktriangledown If G is a connected groupoid, then G' is a connected subgroupoid of G.
- **1** If there is a support-hub in G'_0 , then G' is a connected subgroupoid of G.
- **1** If S is graded prime, then G' is a connected subgroupoid of G.

A couple of key results

Proposition

Let S be a nearly epsilon-strongly G-graded ring. If S is prime, then $\bigoplus_{g\in G_e^e}S_g$ is prime for every $e\in G_0$.

Theorem

Let S be a nearly epsilon-strongly G-graded ring. If there is some $e \in G'_0$ such that e is a support-hub and $\bigoplus_{g \in G_e^e} S_g$ is prime, then S is prime.

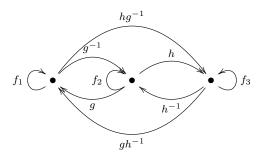
Remark

The assumption on the existence of a support-hub in the above theorem cannot be dropped. Indeed, consider the groupoid $G=\{e,f\}=G_0$ and the groupoid ring $S:=\mathbb{C}[G]$. Then $G_e^e=\{e\}$ and $G_f^f=\{f\}$. Furthermore, $S_e\cong\mathbb{C}$ and $S_f\cong\mathbb{C}$ are both prime. Nevertheless, S is not prime.

Example: A support-hub in a connected grading groupoid is not enough to guarantee primeness

Example

Let $G := \{f_1, f_2, f_3, g, h, g^{-1}, h^{-1}, hg^{-1}, gh^{-1}\}$ be a groupoid with $G_0 = \{f_1, f_2, f_3\}$ and depicted as follows:



Example (Continued ...)

Define S as the ring of matrices over $\mathbb Z$ of the form

$$\begin{pmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & a_{43} & a_{44} \end{pmatrix}.$$

Denote by $\{e_{ij}\}_{i,j}$, the canonical basis of S and define:

$$S_g := \mathbb{Z}e_{12},$$
 $S_{g^{-1}} := \mathbb{Z}e_{21},$ $S_h := \mathbb{Z}e_{43},$ $S_{h^{-1}} := \mathbb{Z}e_{34},$ $S_{f_1} := \mathbb{Z}e_{11},$ $S_{f_3} := \mathbb{Z}e_{44},$ $S_{f_2} := \{\lambda_1e_{22} + \lambda_2e_{33} : \lambda_1, \lambda_2 \in \mathbb{Z}\},$

and $S_l:=\{0\}$, otherwise. This G-grading is nearly epsilon-strong! One can show that $S=\oplus_{l\in G}S_l$ and that $f_2\in G_0'$ is a support-hub. Note that $e_{12}\in S_g$ and $e_{43}\in S_h$ are nonzero elements, but there is no element $a_l\in S_l$ such that $l\in G'$ and $e_{12}a_le_{43}\neq 0$. It follows that S is not graded prime.

Our main result

Theorem

Let S be a nearly epsilon-strongly G-graded ring, and let $G':=\{g\in G: S_{s(g)}\neq\{0\} \text{ and } S_{r(g)}\neq\{0\}\}$. The following statements are equivalent:

- lacktriangle S is prime;
- $\oplus_{e \in G_0} S_e$ is G-prime, and for every $e \in G'_0, \, \oplus_{g \in G^e_e} S_g$ is prime;
- $ullet \oplus_{e \in G_0} S_e$ is G-prime, and for some $e \in G'_0, \, \oplus_{g \in G^e_e} S_g$ is prime;
- lacktriangleq S is graded prime, and for every $e \in G_0', \, \oplus_{g \in G_e^e} S_g$ is prime;
- lacksquare S is graded prime, and for some $e \in G'_0, \, \oplus_{g \in G^e_e} S_g$ is prime;
- lacktriangle For every $e \in G_0', \, e$ is a support-hub, and $\oplus_{g \in G_e^e} S_g$ is prime;
- lacktriangledown For some $e \in G_0', \ e$ is a support-hub, and $\oplus_{g \in G_e^e} S_g$ is prime.

Background

2 Groupoids and groupoid graded rings

Prime nearly epsilon-strongly groupoid graded rings

Application: Prime groupoid rings

Groupoid rings

Ingredients: An s-unital ring R, and a groupoid G.

The corresponding groupoid ring R[G] consists of elements of the form

$$\sum_{g \in G} a_g \delta_g$$

where $a_q \in R$ is zero for all but finitely many $g \in G$.

- Addition: The natural one
- Multiplication: For $g,h\in G$ and $a,b\in R$, the multiplication in R[G] is defined by the rule

$$a\delta_g \cdot b\delta_h := \left\{ egin{array}{ll} ab\delta_{gh} & \mbox{if } (g,h) \in G^2, \\ 0 & \mbox{otherwise.} \end{array}
ight.$$

A characterization of prime groupoid rings

Theorem

Let G be a groupoid and let R be a nonzero s-unital ring. The following assertions are equivalent:

- ① The groupoid ring R[G] is prime;
- $m{0}$ G is connected and there is some $e \in G_0$ such that the group ring $R[G_e^e]$ is prime;
- lacktriangledown G is connected and, for every $e \in G_0,$ the group ring $R[G_e^e]$ is prime;
- \odot G is connected, R is prime and there is some $e \in G_0$ such that G_e^e has no non-trivial finite normal subgroup;
- $oldsymbol{\Theta}$ G is connected, R is prime and, for every $e \in G_0, G_e^e$ has no non-trivial finite normal subgroup.

The end

THANK YOU FOR YOUR ATTENTION!