Information theory via matroids and polymatroids

Thomas Westerback
Division of Mathematics and Physics, Malardalen University

The 5th SNAG workshop in Algebra and Geometry,
28-29 March 2023



Entropy

Coded data Data network
1 2 3

(0 1 2 1

I/E

0 0 ]. 1 2 3

{113y~ @013~ 7 B8 /2
1 00 1\3 |
11 2 ==

2




Entropy

Coded data Data network
i 4 8

(0 1 2 x 1\
0 0 1 1 2 3
i1l >0 137 7 EE 2
1 0 O 1\3
11 2

A\
/
3




Entropy

Coded data Data network
1 2 3

(0 1 2 1 1\
0O 0 1 1 2 3 \

lamr 3 )~ >0 137 7 E& 2
1 0 0 1\ \
R

2




Entropy

@ Entropy can be used to measure the amount of information in
a data set.

e Entropy({1}) < Entropy({1,2}) < Entropy({1,2,3}) = Entropy({2,3})
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Entropy

Coded data Probabilities
1 2 3
(0 1 2 p(012) = 0.1,
< (1) (1) ; > p(001) = p(113) = p(100) = 0.2,
| ;0 g} p(112) = 0.3

o Entropy of data set A: H(A) = — E p(x) log(p(x)).
XEA

H({1}) = —(p(0) loga(p(0)) + p(L) loga(p(1)) = —(0.310g(0.3) + 0.7 log,(0.7) ~ 0.88
H({1,2)}) ~ 1.76
H({2,3}) H({1,2,3}) ~ 2.25



Entropy

@ Capacity of a set of data nodes A in the data network: C(A) = log(|A|)

Data network

o C({1}) = logy(|{0,1}]) =1

{0,1}
o C({1,2}) =2 {0,1}
o C({2,31) = 3 E:{O/“f!
o C({1,2,3}) = 4 ‘\é’
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Entropy

o Rate of a data set A: R(A) = gg;;z%/((i\\)) - Ig((ﬁ))

@ Rate gives a measure on the amount of redundancy in a data
set, the smaller the rate, the greater the redundancy and vice
versa.

Coded data Data network
R({1}) = HZ({{H{;) ~ % - 088
1,2 ) P ==
2,3 .
R({2,3) = Hcé{z,s}i 22 =075 |19
1,2,3 3
R({1,2,3}) = GHissH 225~ (.56



Entropy

General block coded data:
@ ambient space: AF = A; x ... x A, (A; is finite)
@ coded data : C C AE

@ probability distribution on C: pc = {pc}cec
(pc > O and ZCEC pC . 1)

Some properties
The following properties holds for any A,B C E and e € E,

(H1) 0< H(A),

(H2) ACB = H(A) < H(B),

(H3) H(A)+ H(B) > HLANB) + H(AU B),
(C1) C(e) >0,

(€C2) C(e) = H(e),

(C3) C(A) = >_,eaC(a).




Entropy

Block linear coded data with uniform probability distribution:
@ ambient space: Af =TF7

@ coded data : C is a subspace of
@ probability distribution on C: pc = ﬁ forall c € C

(R1)-(R3), (C1)-(C3) and the following properties holds for any
A C E, using Iogq,

(R4) H(A) €7,
(C4) C(A) = Al




Entropy

Block linear coded data C with uniform probability distribution can
be represented by a matrix S.

e C = rowspace(S)
@ Entropy: H(A) = rank(submatrix(A))

(00000)
(00011)
(01111)
0(0|0|1]1 (10111)
(01100)
1/0(1]1]1 (10100)
(11000)
(11011)

o
—
—_
—
—_

o C =span((00011), (01111), (10111)) is a subspce of F3
o H({1,2,3}) = rank(submatrix({1,2,3}) = 2




Matroids and polymatroids

o A (finite) polymatroid P = (p, E) is a pair consisting of
o A finite set E.
o A (rank) function p : 25 — R such that for all X, Y C E:
(R1) p(@) =0,
(R2) X C Y = p(X) < p(Y),
(R3) p(X) +p(Y) 2 p(XUY)+p(XNY).
@ A matroid is a polymatroid which additionally satisfies the
following two conditions for all X C E:
(R4) p(X) € Z,
(R5) p(X) < IXI.




Why using matroids

@ Axiomatic theories in
algebraic combinatorics.

@ Links to several different
areas in mathematics, e.g.
linear algebra, entropy, graph theory,
hypergraph theory, combinatorial optimization,
algebraic geometry, topology, ...

@ Capture several properties
of many mathematical objects,

so called matrodial or
polymatrodial properties.

and polymatroids?

modular functions, p : 2E 47
vector spaces

polytopes
topology Matroids graphs

. . . combinatorial optimization
lattices (posets) with weights

(cyclic flats )

modular functions, p : 2E LR

\ entropy

Polymatroids

polytopes

hypergraphs

combinatorial optimization



Matrodial and polymatrodial properties
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p(3,4,5) = 2 (rank of submatrix)
p(3,4,5,6,7) = 3 (|{largest non-cyclic subgraph}|)
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p(1,2) = Zlogg(3) + 2 + loge(3) ~ 0.74.
ple2, e3) = 4 (|{vertices in subhypergraph}|) (joint entropy of su bset)



Matroids and polymatroids

Matroids were introduced independently by Hassler Whitney
and Takeo Nakasawa in the 1930s.

The interaction between matroid theory and other areas of
mathematics has recently made great progress in several
areas, e.g. Hodge theory (June Huh, ...), Stable polynomials
(Petter Branden, ...), tropical geometry (Erik Katz, ...),
algebraic geometry, representation theory, topology, ... .

June Huh received the 2022 Fields Medal for having found
striking connections between algebraic geometry and
combinatorics, and among others this solved central problems
in combinatorics that had been unsolved for decades, e.g. in
matroid theory.

Polymatroids were introduced by Jack Edmonds in 1970, and
have especially proven to be useful in combinatorial
optimization.



L-polymatroids

Definition (Freij-Hollanti, Grezet, Hollanti, W)

An L-polymatroid is a triple P = (p, ||||, E) where (E, p) is a
polymatroid and [|-|| : 2F — R is a function that satisfies the

following conditions for e € E and A C E:

(L1) llell >0,
(L2) |lell = p(e),
(L3) Al = 2 ecallell

@ L-polymatroids generalize concepts on matroids that
polymatroids do not, e.g. duality, minors, cyclic flats.

@ L-polymatroids capture concepts on mathematical objects
which polymatroids don't, e.g. the capacity of a set of data
nodes in a data network.




Cyclic flats

Definition (Freij-Hollanti, Grezet, Hollanti, W)

Let P = (p,||-||, E) be an L-polymatroid and A C E. Then
o Ais a flat if p(A) < p(AUe) for all e € E — A.

— p(A—a) < |a| for all a € A.

@ Ais a cyclic flat if Ais a flat and a cyclic set.

e Ais a cyclic set if p(A)

@ The collection of cyclic flats is denoted by Z .
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Cyclic flats

Results (Freij-Hollanti, Grezet, Hollanti, W)

Let P = (p,||-||, E) be an L-polymatroid and A C E, then
o (Z,C) is a lattice.
o p(A) = min{p(Z)+ |All - AN Z]| : Z € Z}.
o E, {|le||:e€ E} and {p(Z) : Z € Z} defines P.

o ({Z<€:p(A)=p(2)+|Al—||ANZ|}, <) is a sublattice of
(e




Béing able to characterize different classes of matroids that
can be associated with different objects is generally very

difficult.

Almost all matroids are nonrepresentable.
@ Rota’s conjecture: All Fq-representable matroids can be

Characterization of classes of matroids

Graphical matroids [F>-representable matroids

[F3-reprerentable matroids

classified i.a. a finite list of prohibited minors. An outline of a

proof for Rota’s conjecture has been published, but not the

entire proof.

[F4-representable matroids

1 2 3 4

M = (E,p)




Characterization of classes of matroids

Results (Freij-Hollanti, Grezet, Hollanti, W)

o A characterization of Fy-representable matroids via cyclic flats.

o A first step in characterizing "cyclic flats” of I¥;-representable

matroids in general by finding some forbidden structures on the
lattice of cyclic flats.




Characterization of classes of matroids

Fundamentals:
@ ambient space: AF = A; x ... x A, (A is finite)
@ coded data : C C AF

@ probability distribution on C: pc = {pc}ecec
(pc >0and Y -pc=1)

Definition (Freij-Hollanti, Grezet, Hollanti, W)

The entropic L-polymatroid associated to C C AFjsP =
(o, IIll, E), where

p(A) = Hc(A) and [|A]| = log(|A%)).

vy

@ Informally, for entropic L-polymatroids, coded data A is a cyclic
flat if adding a data node e increases the amount of information,
and deleting a node a results in a possible loss of information
which is less than the maximum amount of information ||al|.




Different classes of coded data

o Ambient spaces, AF = A x ... x A
e equicardinal alphabets (|A;| = |Aj| for all 7, ),
e non-equicardinal alphabets (|A;| # |A;| for some i, j),
o {AF)} D {AF is a group} D {AF is an Abelian group} D
{AE is a module} D {AE = R" for some finite ring R} D
{AF = R", R is Frobenius} 2 {AF =TF7} D {AF =TF3}.
@ Codes, C:

o {C C AE} D {group codes} D {Abelian group codes} D
{linear codes} D {R-vector-linear codes} O {R-linear codes}
Probability distribution, pc:

o {pe>0, Y ccpc=1forceC}D
{uniform distribution: ps = ﬁ}

o A code C is Quasi-uniform if H(A) = log(|C(A)|) for all
ACE.

(Quasi-uniform codes can be considered as codes with

maximal amount of information in comparison with the sizes
of its code puncturing.)




Distributed storage

@ Distributed storage is a technique for storing data on multiple
storage devices that are interconnected in a network.

@ The data is distributed over several units instead of one.

@ Benefits of distributed storage are
- ability to retrieve large amounts of data quickly and reliably.
- high availability and scalability.

@ Examples of applications: peer-to-peer networks, cloud-based
storage services and data centers.

12 3 45 1 1
00201 o B8 B8
C=<01010 - 5
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Distributed storage

@ Desirable characteristics of a distributed storage system:

- Efficient local repair of faulty storage nodes.
High global reliability.

Low storage excess.

High availability.

Effective hierarchy structure.

Small size of the coding alphabet.

@ The properties given above can be measured with different
parameters.

@ There is a tradeoff between these parameters.
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Distributed storage

Homogeneous linear distributed storage systems can be
modeled by matrices over a finite fields.

General heterogeneous distributed storage systems can be
modeled by general coded data and entropy.

Why general heterogeneous distributed storage systems may
be preferable to homogeneous linear distributed storage
systems:

- The data storage devices can have different storage capacities.

- Different data can have different probabilities to be stored.

- Has the ability to achieve better values with respect to
previously mentioned parameters in comparison to linear
systems.

Linear systems can be analyzed via matroids.

General systems can be analyzed via entropic L-polymatroids
and are generally more difficult to analyze and construct than
linear ones.



Distributed storage

Results (Freij-Hollanti, Grezet, Hollanti, W)

@ Introduced and developed the theory of L-polymatroids and
entropic L-polymatroids to be able to use "cylic flats” to
analyze linear and general DSS.

@ Limits for the various parameters given earlier

@ Structures and constructions of good linear and general DSS. d




Distributed storage

Gammoid

cyclic flats
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Distributed storage

Theorem (Freij-Hollanti, Grezet, Hollanti, W)

Let P = (p,||||, E) be the associated entropic L-polymatroid of the
coded data C C AE, (w.l.o.g. assume (), E € Z). Then

length: n= || E||
e rank: k = p(E)
ok
o rate: R =
°

failure tolerance: d = |E| — max{|Z|+~(Z): Z € Z — E},
where 7(Z) = max{|A| : A C E —Z and p(Z) +||A]| < p(E)}.

Theorem (Freij-Hollanti, Grezet, Hollanti, W)
Let let (p,||-, E||) be an (n, k,d,r,0d,t)-L-polymatroid. Then

(i) t6-1)+1<d<I|E|-|al,
(i) R=%< &0,

where o depends on ||-|| and (k,r,d,t) and 3 on ||-|| and (d,r, 0, t)

o

Theorem (Freij-Hollanti, Grezet, Hollanti, W)

Let P = (p,||-||, E) be an (n, k,d,r,d,t)-L-polymatroid that
achieves the upper bound (i) or (ii) given above. Then,

(a) R union of repair groups p(R) < k = R is a cyclic flat,
(b) if Z is a cyclic flat, then ﬁgf(zzlf must satisfy (ii) on E — Z.

] =7 = = =
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