The noncommutative geometry of frame bundles

Stefan Wagner Blekinge Institute of Technology March 26, 2023 Frame bundles

The noncommutative geometry of principal bundles

The noncommutative geometry of frame bundles

Frame bundles

The noncommutative geometry of principal bundles

The noncommutative geometry of frame bundles

- The letters P and X stand for locally compact spaces.
- The letter G stands for a compact group.
- All representations of *G* are assumed to be finite-dimensional and unitary.
- We denote a representation $\sigma : G \to U(V_{\sigma})$ by the pair (σ, V_{σ}) or simply by σ when no ambiguity is possible.
- We write $\operatorname{Rep}(G)$ for the representation category of G.

A continuous action $r: P \times G \rightarrow P$ is called a *(topological) principal bundle* if r is free, i.e., all stabilizer groups are trivial.

The Hopf fibration

The canonical right action of \mathbb{S}^1 on SU(2) is a principal bundle. Moreover, SU(2)/ $\mathbb{S}^1 \cong \mathbb{S}^2$. This yields the famous Hopf fibration

 $\mathbb{S}^1 \hookrightarrow \mathsf{SU}(2) \cong \mathbb{S}^3 \twoheadrightarrow \mathbb{S}^2.$

A continuous action $r: P \times G \rightarrow P$ is called a *(topological) principal bundle* if r is free, i. e., all stabilizer groups are trivial.

The Hopf fibration

The canonical right action of \mathbb{S}^1 on SU(2) is a principal bundle. Moreover, SU(2)/ $\mathbb{S}^1 \cong \mathbb{S}^2$. This yields the famous Hopf fibration

 $\mathbb{S}^1 \hookrightarrow \mathsf{SU}(2) \cong \mathbb{S}^3 \twoheadrightarrow \mathbb{S}^2.$

- For an object σ in Rep(G) we obtain a hermitian vector bundle over P/G by putting Γ_P(σ) := (P × V_σ)/G.
- For a morphism *T* in Rep(*G*) we obtain a bundle map of Γ_P(σ) by putting Γ(*T*)([(ρ, ν]) := ([(ρ, *T*(ν)]).
- We thus get a functor Γ_P : Rep(G) → Vec_h(P/G), Vec_h(P/G) being the category of hermitian vector bundles over P/G.
- It is possible to reconstruct P from F_P up to isomorphism (Tannaka-Krein duality theory).

- For an object σ in Rep(G) we obtain a hermitian vector bundle over P/G by putting Γ_P(σ) := (P × V_σ)/G.
- For a morphism T in Rep(G) we obtain a bundle map of Γ_P(σ) by putting Γ(T)([(p, v]) := ([(p, T(v)]).
- We thus get a functor Γ_P : Rep(G) → Vec_h(P/G), Vec_h(P/G) being the category of hermitian vector bundles over P/G.
- It is possible to reconstruct P from F_P up to isomorphism (Tannaka-Krein duality theory).

- For an object σ in Rep(G) we obtain a hermitian vector bundle over P/G by putting Γ_P(σ) := (P × V_σ)/G.
- For a morphism T in Rep(G) we obtain a bundle map of Γ_P(σ) by putting Γ(T)([(p, v]) := ([(p, T(v)]).
- We thus get a functor Γ_P : Rep(G) → Vec_h(P/G), Vec_h(P/G) being the category of hermitian vector bundles over P/G.
- It is possible to reconstruct P from F_P up to isomorphism (Tannaka-Krein duality theory).

- For an object σ in Rep(G) we obtain a hermitian vector bundle over P/G by putting Γ_P(σ) := (P × V_σ)/G.
- For a morphism T in Rep(G) we obtain a bundle map of Γ_P(σ) by putting Γ(T)([(p, v]) := ([(p, T(v)]).
- We thus get a functor Γ_P : Rep(G) → Vec_h(P/G), Vec_h(P/G) being the category of hermitian vector bundles over P/G.
- It is possible to reconstruct *P* from *F_P* up to isomorphism (Tannaka-Krein duality theory).

- For an object σ in Rep(G) we obtain a hermitian vector bundle over P/G by putting Γ_P(σ) := (P × V_σ)/G.
- For a morphism T in Rep(G) we obtain a bundle map of Γ_P(σ) by putting Γ(T)([(p, v]) := ([(p, T(v)]).
- We thus get a functor Γ_P : Rep(G) → Vec_h(P/G), Vec_h(P/G) being the category of hermitian vector bundles over P/G.
- It is possible to reconstruct P from F_P up to isomorphism (Tannaka-Krein duality theory).

Let $q: E \to X$ be a hermitian vector bundle with typical fibre V. The *frame bundle*

$$\operatorname{Fr}(E) \coloneqq \bigsqcup_{x \in X} \operatorname{Iso}(V, E_x), \qquad E_x \coloneqq q^{-1}(\{x\}),$$

carries the structure of a principal U(V)-bundle w.r.t. the canonical right action of U(V) on Fr(E).

Remark

- Let (π, V) be the standard representation (π, V) of U(V). Then $\Gamma_{Fr(E)}(\pi) = (Fr(E) \times V)/U(V) \cong E$.
- If *E* is real and orientable, then we may consider the reduction of Fr(*E*) to SO(*n*) given by orientation-preserving isometries.

Let $q: E \rightarrow X$ be a hermitian vector bundle with typical fibre V. The *frame bundle*

$$\operatorname{Fr}(E) \coloneqq \bigsqcup_{x \in X} \operatorname{Iso}(V, E_x), \qquad E_x \coloneqq q^{-1}(\{x\}),$$

carries the structure of a principal U(V)-bundle w.r.t. the canonical right action of U(V) on Fr(E).

Remark

- Let (π, V) be the standard representation (π, V) of U(V). Then $\Gamma_{Fr(E)}(\pi) = (Fr(E) \times V)/U(V) \cong E$.
- If *E* is real and orientable, then we may consider the reduction of Fr(*E*) to SO(*n*) given by orientation-preserving isometries.

Let $q: E \to X$ be a hermitian vector bundle with typical fibre V. The *frame bundle*

$$\operatorname{Fr}(E) \coloneqq \bigsqcup_{x \in X} \operatorname{Iso}(V, E_x), \qquad E_x \coloneqq q^{-1}(\{x\}),$$

carries the structure of a principal U(V)-bundle w.r.t. the canonical right action of U(V) on Fr(E).

Remark

- Let (π, V) be the standard representation (π, V) of U(V). Then $\Gamma_{Fr(E)}(\pi) = (Fr(E) \times V)/U(V) \cong E$.
- If *E* is real and orientable, then we may consider the reduction of Fr(*E*) to SO(*n*) given by orientation-preserving isometries.

- Frame bundles constitute a key tool for studying vector bundles.
- The frame bundle can be utilized in order to attach several new vector bundles in a functorial manner.
- A connection on the frame bundle induces covariant derivatives on all associated bundles in a coherent way, leading to a various important geometric constructions, i. e.:
 - In Riemannian geometry, the Levi-Civita connection on Fr(TX),
 X being a manifold, induces a covariant derivative on the tensor fields, leading, for instance, to the Riemannian curvature of X.
 - In Riemannian spin geometry, a "spin connection" on Fr(TX),
 X being a manifold, induces a covariant derivative on the spinor bundle, leading to the Dirac operator on the the spinor bundle.

- Frame bundles constitute a key tool for studying vector bundles.
- The frame bundle can be utilized in order to attach several new vector bundles in a functorial manner.
- A connection on the frame bundle induces covariant derivatives on all associated bundles in a coherent way, leading to a various important geometric constructions, i. e.:
 - In Riemannian geometry, the Levi-Civita connection on Fr(TX),
 X being a manifold, induces a covariant derivative on the tensor fields, leading, for instance, to the Riemannian curvature of X.
 - In Riemannian spin geometry, a "spin connection" on Fr(TX),
 X being a manifold, induces a covariant derivative on the spinor bundle, leading to the Dirac operator on the the spinor bundle.

- Frame bundles constitute a key tool for studying vector bundles.
- The frame bundle can be utilized in order to attach several new vector bundles in a functorial manner.
- A connection on the frame bundle induces covariant derivatives on all associated bundles in a coherent way, leading to a various important geometric constructions, i.e.:
 - In Riemannian geometry, the Levi-Civita connection on Fr(TX),
 X being a manifold, induces a covariant derivative on the tensor fields, leading, for instance, to the Riemannian curvature of X.
 - In Riemannian spin geometry, a "spin connection" on Fr(TX),
 X being a manifold, induces a covariant derivative on the spinor bundle, leading to the Dirac operator on the the spinor bundle.

- Frame bundles constitute a key tool for studying vector bundles.
- The frame bundle can be utilized in order to attach several new vector bundles in a functorial manner.
- A connection on the frame bundle induces covariant derivatives on all associated bundles in a coherent way, leading to a various important geometric constructions, i.e.:
 - In Riemannian geometry, the Levi-Civita connection on Fr(TX),
 X being a manifold, induces a covariant derivative on the tensor fields, leading, for instance, to the Riemannian curvature of X.
 - In Riemannian spin geometry, a "spin connection" on Fr(TX),
 X being a manifold, induces a covariant derivative on the spinor bundle, leading to the Dirac operator on the the spinor bundle.

- Frame bundles constitute a key tool for studying vector bundles.
- The frame bundle can be utilized in order to attach several new vector bundles in a functorial manner.
- A connection on the frame bundle induces covariant derivatives on all associated bundles in a coherent way, leading to a various important geometric constructions, i.e.:
 - In Riemannian geometry, the Levi-Civita connection on Fr(TX),
 X being a manifold, induces a covariant derivative on the tensor fields, leading, for instance, to the Riemannian curvature of X.
 - In Riemannian spin geometry, a "spin connection" on Fr(TX),
 X being a manifold, induces a covariant derivative on the spinor bundle, leading to the Dirac operator on the the spinor bundle.

- Frame bundles constitute a key tool for studying vector bundles.
- The frame bundle can be utilized in order to attach several new vector bundles in a functorial manner.
- A connection on the frame bundle induces covariant derivatives on all associated bundles in a coherent way, leading to a various important geometric constructions, i.e.:
 - In Riemannian geometry, the Levi-Civita connection on Fr(TX),
 X being a manifold, induces a covariant derivative on the tensor fields, leading, for instance, to the Riemannian curvature of X.
 - In Riemannian spin geometry, a "spin connection" on Fr(TX),
 X being a manifold, induces a covariant derivative on the spinor bundle, leading to the Dirac operator on the the spinor bundle.

The What

Find an algebraic analogue of the geometric inducing procedure for frame bundles in the setting of C^* -algebraic principal bundles.

The Why

This is part of a larger program with the purpose to give a novel bundle-theoretic perspective on NC Riemannian spin geometry:

- Lift Dirac operators to noncommutative principal bundles.
- Propose a notion of noncommutative frame bundles.
- Extend noncommutative principal bundles by central extensions.
- Find new noncommutative Riemannian spin geometries.

The What

Find an algebraic analogue of the geometric inducing procedure for frame bundles in the setting of C^* -algebraic principal bundles.

The Why

This is part of a larger program with the purpose to give a novel bundle-theoretic perspective on NC Riemannian spin geometry:

- Lift Dirac operators to noncommutative principal bundles.
- Propose a notion of noncommutative frame bundles.
- Extend noncommutative principal bundles by central extensions.
- Find new noncommutative Riemannian spin geometries.

The What

Find an algebraic analogue of the geometric inducing procedure for frame bundles in the setting of C^* -algebraic principal bundles.

The Why

This is part of a larger program with the purpose to give a novel bundle-theoretic perspective on NC Riemannian spin geometry:

- Lift Dirac operators to noncommutative principal bundles.
- Propose a notion of noncommutative frame bundles.
- Extend noncommutative principal bundles by central extensions.
- Find new noncommutative Riemannian spin geometries.

Frame bundles

The noncommutative geometry of principal bundles

The noncommutative geometry of frame bundles

- The letters ${\mathcal A}$ and ${\mathcal B}$ stand for unital C*-algebras.
- We use Irr(G) to denote the set of equivalence classes of irreducible representations.
- We write $Corr(\mathcal{B})$ for the category of correspondences over \mathcal{B} .

- By a C^{*}-dynamical system we mean a triple (A, G, α) with a strongly continuous group homomorphism α : G → Aut(A).
- We typically write B for the corresponding fixed point algebra,
 i. e., B := A^G := {x ∈ A : (∀g ∈ G) α_g(x) = x}.
- Like every representation of G, A can be decomposed into its isotypic components A(σ) := P_σ(A), σ ∈ Irr(G), where

$$P_{\sigma}(x) \coloneqq \dim(\sigma) \cdot \int_{G} \operatorname{Tr}(\sigma_{g}^{*}) \alpha_{g}(x) dg, \qquad x \in \mathcal{A}.$$

That is, $\bigoplus_{\sigma \in Irr(G)}^{alg} A(\sigma)$ is a dense *-subalgebra of \mathcal{A} .

- By a C^{*}-dynamical system we mean a triple (A, G, α) with a strongly continuous group homomorphism α : G → Aut(A).
- We typically write B for the corresponding fixed point algebra,
 i. e., B := A^G := {x ∈ A : (∀g ∈ G) α_g(x) = x}.
- Like every representation of G, A can be decomposed into its isotypic components A(σ) := P_σ(A), σ ∈ Irr(G), where

$$P_{\sigma}(x) \coloneqq \dim(\sigma) \cdot \int_{G} \operatorname{Tr}(\sigma_{g}^{*}) \alpha_{g}(x) dg, \qquad x \in \mathcal{A}.$$

That is, $\bigoplus_{\sigma \in Irr(G)}^{alg} A(\sigma)$ is a dense *-subalgebra of \mathcal{A} .

- By a C^{*}-dynamical system we mean a triple (A, G, α) with a strongly continuous group homomorphism α : G → Aut(A).
- We typically write B for the corresponding fixed point algebra,
 i. e., B := A^G := {x ∈ A : (∀g ∈ G) α_g(x) = x}.
- Like every representation of G, A can be decomposed into its isotypic components A(σ) := P_σ(A), σ ∈ Irr(G), where

$$P_{\sigma}(x) \coloneqq \dim(\sigma) \cdot \int_{G} \operatorname{Tr}(\sigma_{g}^{*}) \alpha_{g}(x) dg, \qquad x \in \mathcal{A}.$$

That is, $\bigoplus_{\sigma \in Irr(G)}^{alg} A(\sigma)$ is a dense *-subalgebra of \mathcal{A} .

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a C^{*}-dynamical system.

• For an object σ in $\operatorname{Rep}(G)$ we put

 $\Gamma_{\mathcal{A}}(\sigma) \coloneqq \{ x \in \mathcal{A} \otimes V_{\sigma} : (\forall g \in G) \, \alpha_g \otimes \sigma_g(x) = x \}.$

- Note that $\Gamma_{\mathcal{A}}(1) = \mathcal{B}$, 1 being the trivial representation of G.
- Each $\Gamma_{\mathcal{A}}(\sigma)$ is naturally a correspondence over \mathcal{B} w.r.t.
 - the canonical B-bimodule structure,
 - the restriction of $(a \otimes v, b \otimes w)_A := (v, w)a^*b$ to B.
- Note that if (σ, V_σ) is irreducible, then Γ_A(σ̄) ⊗ V_σ ≅ A(σ) via the map defined by a ⊗ v̄ ⊗ w ↦ a · (v, w).
- For a morphism T in $\operatorname{Rep}(G)$ we put $\Gamma_{\mathcal{A}}(T) \coloneqq \mathbb{1}_{\mathcal{A}} \otimes T$.
- Note that Γ_A(T)^{*} = Γ_A(T^{*}) for all morphisms T in Rep(G).

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a C^{*}-dynamical system.

• For an object σ in $\operatorname{Rep}(G)$ we put

 $\Gamma_{\mathcal{A}}(\sigma) \coloneqq \{x \in \mathcal{A} \otimes V_{\sigma} : (\forall g \in G) \, \alpha_g \otimes \sigma_g(x) = x\}.$

- Note that $\Gamma_{\mathcal{A}}(1) = \mathcal{B}$, 1 being the trivial representation of G.
- Each $\Gamma_{\mathcal{A}}(\sigma)$ is naturally a correspondence over \mathcal{B} w.r.t.
 - the canonical *B*-bimodule structure,
 - the restriction of $(a \otimes v, b \otimes w)_{\mathcal{A}} \coloneqq (v, w)a^*b$ to \mathcal{B} .
- Note that if (σ, V_σ) is irreducible, then Γ_A(σ̄) ⊗ V_σ ≅ A(σ) via the map defined by a ⊗ v̄ ⊗ w ↦ a · (v, w).
- For a morphism T in $\operatorname{Rep}(G)$ we put $\Gamma_{\mathcal{A}}(T) \coloneqq \mathbb{1}_{\mathcal{A}} \otimes T$.
- Note that $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a C^{*}-dynamical system.

• For an object σ in $\operatorname{Rep}(G)$ we put

 $\Gamma_{\mathcal{A}}(\sigma) \coloneqq \{x \in \mathcal{A} \otimes V_{\sigma} : (\forall g \in G) \, \alpha_g \otimes \sigma_g(x) = x\}.$

- Note that $\Gamma_{\mathcal{A}}(1) = \mathcal{B}$, 1 being the trivial representation of G.
- Each $\Gamma_{\mathcal{A}}(\sigma)$ is naturally a correspondence over \mathcal{B} w.r.t.
 - the canonical *B*-bimodule structure,
 - the restriction of $(a \otimes v, b \otimes w)_{\mathcal{A}} \coloneqq (v, w)a^*b$ to \mathcal{B} .
- Note that if (σ, V_σ) is irreducible, then Γ_A(σ̄) ⊗ V_σ ≅ A(σ) via the map defined by a ⊗ v̄ ⊗ w ↦ a · (v, w).
- For a morphism T in $\operatorname{Rep}(G)$ we put $\Gamma_{\mathcal{A}}(T) \coloneqq \mathbb{1}_{\mathcal{A}} \otimes T$.
- Note that $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a C^{*}-dynamical system.

$$\Gamma_{\mathcal{A}}(\sigma) \coloneqq \{x \in \mathcal{A} \otimes V_{\sigma} : (\forall g \in G) \, \alpha_g \otimes \sigma_g(x) = x\}.$$

- Note that $\Gamma_{\mathcal{A}}(1) = \mathcal{B}$, 1 being the trivial representation of G.
- Each $\Gamma_{\mathcal{A}}(\sigma)$ is naturally a correspondence over \mathcal{B} w.r.t.
 - the canonical \mathcal{B} -bimodule structure,
 - the restriction of $\langle a \otimes v, b \otimes w \rangle_{\mathcal{A}} \coloneqq \langle v, w \rangle a^* b$ to \mathcal{B} .
- Note that if (σ, V_σ) is irreducible, then Γ_A(σ̄) ⊗ V_σ ≅ A(σ) via the map defined by a ⊗ v̄ ⊗ w ↦ a · (v, w).
- For a morphism T in $\operatorname{Rep}(G)$ we put $\Gamma_{\mathcal{A}}(T) \coloneqq \mathbb{1}_{\mathcal{A}} \otimes T$.
- Note that $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a C^{*}-dynamical system.

• For an object σ in $\operatorname{Rep}(G)$ we put

$$\Gamma_{\mathcal{A}}(\sigma) \coloneqq \{x \in \mathcal{A} \otimes V_{\sigma} : (\forall g \in G) \, \alpha_g \otimes \sigma_g(x) = x\}.$$

- Note that $\Gamma_{\mathcal{A}}(1) = \mathcal{B}$, 1 being the trivial representation of G.
- Each $\Gamma_{\mathcal{A}}(\sigma)$ is naturally a correspondence over \mathcal{B} w.r.t.
 - the canonical *B*-bimodule structure,

- the restriction of $\langle a \otimes v, b \otimes w \rangle_{\mathcal{A}} := \langle v, w \rangle a^* b$ to \mathcal{B} .

- Note that if (σ, V_σ) is irreducible, then Γ_A(σ̄) ⊗ V_σ ≅ A(σ) via the map defined by a ⊗ v̄ ⊗ w ↦ a · (v, w).
- For a morphism T in $\operatorname{Rep}(G)$ we put $\Gamma_{\mathcal{A}}(T) \coloneqq \mathbb{1}_{\mathcal{A}} \otimes T$.
- Note that $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a C^{*}-dynamical system.

$$\Gamma_{\mathcal{A}}(\sigma) \coloneqq \{x \in \mathcal{A} \otimes V_{\sigma} : (\forall g \in G) \, \alpha_g \otimes \sigma_g(x) = x\}.$$

- Note that $\Gamma_{\mathcal{A}}(1) = \mathcal{B}$, 1 being the trivial representation of G.
- Each $\Gamma_{\mathcal{A}}(\sigma)$ is naturally a correspondence over \mathcal{B} w.r.t.
 - the canonical *B*-bimodule structure,
 - the restriction of $\langle a \otimes v, b \otimes w \rangle_{\mathcal{A}} \coloneqq \langle v, w \rangle a^* b$ to \mathcal{B} .
- Note that if (σ, V_σ) is irreducible, then Γ_A(σ̄) ⊗ V_σ ≅ A(σ) via the map defined by a ⊗ v̄ ⊗ w ↦ a · ⟨v, w⟩.
- For a morphism T in $\operatorname{Rep}(G)$ we put $\Gamma_{\mathcal{A}}(T) \coloneqq \mathbb{1}_{\mathcal{A}} \otimes T$.
- Note that $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a C^{*}-dynamical system.

$$\Gamma_{\mathcal{A}}(\sigma) \coloneqq \{x \in \mathcal{A} \otimes V_{\sigma} : (\forall g \in G) \, \alpha_g \otimes \sigma_g(x) = x\}.$$

- Note that $\Gamma_{\mathcal{A}}(1) = \mathcal{B}$, 1 being the trivial representation of G.
- Each $\Gamma_{\mathcal{A}}(\sigma)$ is naturally a correspondence over \mathcal{B} w.r.t.
 - the canonical *B*-bimodule structure,
 - the restriction of $\langle a \otimes v, b \otimes w \rangle_{\mathcal{A}} \coloneqq \langle v, w \rangle a^* b$ to \mathcal{B} .
- Note that if (σ, V_σ) is irreducible, then Γ_A(σ̄) ⊗ V_σ ≅ A(σ) via the map defined by a ⊗ v̄ ⊗ w ↦ a · ⟨v, w⟩.
- For a morphism T in $\operatorname{Rep}(G)$ we put $\Gamma_{\mathcal{A}}(T) \coloneqq \mathbb{1}_{\mathcal{A}} \otimes T$.
- Note that $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a C^{*}-dynamical system.

$$\Gamma_{\mathcal{A}}(\sigma) \coloneqq \{x \in \mathcal{A} \otimes V_{\sigma} : (\forall g \in G) \, \alpha_g \otimes \sigma_g(x) = x\}.$$

- Note that $\Gamma_{\mathcal{A}}(1) = \mathcal{B}$, 1 being the trivial representation of G.
- Each $\Gamma_{\mathcal{A}}(\sigma)$ is naturally a correspondence over \mathcal{B} w.r.t.
 - the canonical *B*-bimodule structure,
 - the restriction of $\langle a \otimes v, b \otimes w \rangle_{\mathcal{A}} \coloneqq \langle v, w \rangle a^* b$ to \mathcal{B} .
- Note that if (σ, V_σ) is irreducible, then Γ_A(σ̄) ⊗ V_σ ≅ A(σ) via the map defined by a ⊗ v̄ ⊗ w ↦ a ⋅ ⟨v, w⟩.
- For a morphism T in $\operatorname{Rep}(G)$ we put $\Gamma_{\mathcal{A}}(T) \coloneqq \mathbb{1}_{\mathcal{A}} \otimes T$.
- Note that $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

Associated vector bundles (I)

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a C^{*}-dynamical system.

• For an object σ in $\operatorname{Rep}(G)$ we put

$$\Gamma_{\mathcal{A}}(\sigma) \coloneqq \{x \in \mathcal{A} \otimes V_{\sigma} : (\forall g \in G) \, \alpha_g \otimes \sigma_g(x) = x\}.$$

- Note that $\Gamma_{\mathcal{A}}(1) = \mathcal{B}$, 1 being the trivial representation of G.
- Each $\Gamma_{\mathcal{A}}(\sigma)$ is naturally a correspondence over \mathcal{B} w.r.t.
 - the canonical *B*-bimodule structure,
 - the restriction of $\langle a \otimes v, b \otimes w \rangle_{\mathcal{A}} \coloneqq \langle v, w \rangle a^* b$ to \mathcal{B} .
- Note that if (σ, V_σ) is irreducible, then Γ_A(σ̄) ⊗ V_σ ≅ A(σ) via the map defined by a ⊗ v̄ ⊗ w ↦ a · ⟨v, w⟩.
- For a morphism T in $\operatorname{Rep}(G)$ we put $\Gamma_{\mathcal{A}}(T) \coloneqq \mathbb{1}_{\mathcal{A}} \otimes T$.
- Note that $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

Associated vector bundles (II)

- We thus get a linear functor Γ_A : Rep(G) → Corr(B) such that:
 (i) Γ_A(1) = B.
 (ii) Γ_A(T)* = Γ_A(T*) for all morphisms T in Rep(G).
- We have natural *B*-bilinear isometries

 $m_{\mathcal{A}}(\sigma,\tau): \Gamma_{\mathcal{A}}(\sigma) \otimes_{\mathcal{B}} \Gamma_{\mathcal{A}}(\tau) \to \Gamma_{\mathcal{A}}(\sigma \otimes \tau), \quad x \otimes y \mapsto x_{12}y_{13}$

for all objects σ , τ in Rep(G) such that:

(iii) $m_{\mathcal{A}}(\sigma, \tau \otimes \rho)$ (id $\otimes_{\mathcal{B}} m_{\mathcal{A}}(\tau, \rho)$) = $m_{\mathcal{A}}(\sigma \otimes \tau, \rho)$ ($m_{\mathcal{A}}(\sigma, \tau) \otimes_{\mathcal{B}}$ id) for all objects σ, τ, ρ in Rep(G).

Associated vector bundles (II)

- We thus get a linear functor $\Gamma_{\mathcal{A}} : \operatorname{Rep}(G) \to \operatorname{Corr}(\mathcal{B})$ such that:
 - (i) $\Gamma_{\mathcal{A}}(\mathbb{1}) = \mathcal{B}.$
 - (ii) $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.
- We have natural \mathcal{B} -bilinear isometries

 $m_{\mathcal{A}}(\sigma,\tau): \Gamma_{\mathcal{A}}(\sigma) \otimes_{\mathcal{B}} \Gamma_{\mathcal{A}}(\tau) \to \Gamma_{\mathcal{A}}(\sigma \otimes \tau), \quad x \otimes y \mapsto x_{12}y_{13}$

for all objects σ, τ in $\operatorname{Rep}(G)$ such that:

(iii) $m_{\mathcal{A}}(\sigma, \tau \otimes \rho)$ (id $\otimes_{\mathcal{B}} m_{\mathcal{A}}(\tau, \rho)$) = $m_{\mathcal{A}}(\sigma \otimes \tau, \rho)$ ($m_{\mathcal{A}}(\sigma, \tau) \otimes_{\mathcal{B}}$ id) for all objects σ, τ, ρ in Rep(G).

Associated vector bundles (II)

- We thus get a linear functor $\Gamma_{\mathcal{A}} : \operatorname{Rep}(G) \to \operatorname{Corr}(\mathcal{B})$ such that:
 - (i) $\Gamma_{\mathcal{A}}(\mathbb{1}) = \mathcal{B}$.
 - (ii) $\Gamma_{\mathcal{A}}(T)^* = \Gamma_{\mathcal{A}}(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.
- We have natural \mathcal{B} -bilinear isometries

$$m_{\mathcal{A}}(\sigma,\tau): \Gamma_{\mathcal{A}}(\sigma) \otimes_{\mathcal{B}} \Gamma_{\mathcal{A}}(\tau) \to \Gamma_{\mathcal{A}}(\sigma \otimes \tau), \quad x \otimes y \mapsto x_{12}y_{13}$$

for all objects σ, τ in $\operatorname{Rep}(G)$ such that:

(iii) $m_{\mathcal{A}}(\sigma, \tau \otimes \rho)$ (id $\otimes_{\mathcal{B}} m_{\mathcal{A}}(\tau, \rho)$) = $m_{\mathcal{A}}(\sigma \otimes \tau, \rho)$ ($m_{\mathcal{A}}(\sigma, \tau) \otimes_{\mathcal{B}}$ id) for all objects σ, τ, ρ in Rep(G).

Weak unitary tensor functors (Neshveyev, [1, Def. 2.1])

By a weak unitary tensor functor $\operatorname{Rep}(G) \to \operatorname{Corr}(\mathcal{B})$ we mean

- a linear functor $\Gamma : \operatorname{Rep}(G) \to \operatorname{Corr}(\mathcal{B})$ together with
- natural *B*-bilinear isometries

$$m(\sigma,\tau): \Gamma(\sigma) \otimes_{\mathcal{B}} \Gamma(\tau) \to \Gamma(\sigma \otimes \tau)$$

for all objects σ, τ in $\operatorname{Rep}(G)$

such that:

(i) $\Gamma(1) = \mathcal{B}$.

(ii) $\Gamma(T)^* = \Gamma(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

(iii) $m(\sigma, \tau \otimes \rho)$ (id $\otimes_{\mathcal{B}} m(\tau, \rho)$) = $m(\sigma \otimes \tau, \rho)$ ($m(\sigma, \tau) \otimes_{\mathcal{B}}$ id) for all objects σ, τ, ρ in Rep(G).

Weak unitary tensor functors (Neshveyev, [1, Def. 2.1])

By a weak unitary tensor functor $\operatorname{Rep}(G) \to \operatorname{Corr}(\mathcal{B})$ we mean

- a linear functor $\Gamma : \operatorname{Rep}(G) \to \operatorname{Corr}(\mathcal{B})$ together with
- natural *B*-bilinear isometries

$$m(\sigma,\tau): \Gamma(\sigma) \otimes_{\mathcal{B}} \Gamma(\tau) \to \Gamma(\sigma \otimes \tau)$$

for all objects σ, τ in $\operatorname{Rep}(G)$

such that:

(i) $\Gamma(\mathbb{1}) = \mathcal{B}$.

(ii) $\Gamma(T)^* = \Gamma(T^*)$ for all morphisms T in $\operatorname{Rep}(G)$.

(iii) $m(\sigma, \tau \otimes \rho) (id \otimes_{\mathcal{B}} m(\tau, \rho)) = m(\sigma \otimes \tau, \rho) (m(\sigma, \tau) \otimes_{\mathcal{B}} id)$ for all objects σ, τ, ρ in $\operatorname{Rep}(G)$.

Theorem (Neshveyev, [1, Thm. 2.3])

There is a 1:1 correspondence between C^{*}-dynamical systems (\mathcal{A}, G, α) and weak unitary tensor functors $\text{Rep}(G) \rightarrow \text{Corr}(\mathcal{B})$.

A C*-dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ is called *free* if the *Ellwood map*

 $\Phi: \mathcal{A} \otimes_{\mathsf{alg}} \mathcal{A} \to C(G, \mathcal{A}), \quad \Phi(x \otimes y)(g) \coloneqq x \alpha_g(y)$

has dense range (w.r.t. the canonical C^{*}-norm on C(G, A)).

Remark (A characterization of freeness)

A C*-dynamical system (\mathcal{A}, G, α) is free if and only if the induced maps $m_{\mathcal{A}}(\sigma, \tau)$ for all objects σ, τ in Rep(G) are unitary. That is, there is a 1:1 correspondence between free C*-dynamical systems (\mathcal{A}, G, α) and unitary tensor functors Rep $(G) \rightarrow \text{Corr}(\mathcal{B})$. A C*-dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ is called *free* if the *Ellwood map*

$$\Phi: \mathcal{A} \otimes_{\mathsf{alg}} \mathcal{A} \to C(G, \mathcal{A}), \quad \Phi(x \otimes y)(g) \coloneqq x \alpha_g(y)$$

has dense range (w.r.t. the canonical C^{*}-norm on C(G, A)).

Remark (A characterization of freeness)

A C*-dynamical system (\mathcal{A}, G, α) is free if and only if the induced maps $m_{\mathcal{A}}(\sigma, \tau)$ for all objects σ, τ in Rep(G) are unitary. That is, there is a 1:1 correspondence between free C*-dynamical systems (\mathcal{A}, G, α) and unitary tensor functors Rep $(G) \rightarrow \text{Corr}(\mathcal{B})$. A C*-dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ is called *free* if the *Ellwood map*

$$\Phi: \mathcal{A} \otimes_{\mathsf{alg}} \mathcal{A} \to C(G, \mathcal{A}), \quad \Phi(x \otimes y)(g) \coloneqq x \alpha_g(y)$$

has dense range (w.r.t. the canonical C^{*}-norm on C(G, A)).

Remark (A characterization of freeness)

A C*-dynamical system (\mathcal{A}, G, α) is free if and only if the induced maps $m_{\mathcal{A}}(\sigma, \tau)$ for all objects σ, τ in Rep(G) are unitary. That is, there is a 1:1 correspondence between free C*-dynamical systems (\mathcal{A}, G, α) and unitary tensor functors Rep $(G) \rightarrow \text{Corr}(\mathcal{B})$. Let $r: P \times G \rightarrow P$ be a continuous action on a compact space P. The map $\alpha: G \rightarrow Aut(C(P))$ given by

 $\alpha_g(f)(p) \coloneqq f(r(p,g))$

yields a C*-dynamical system $(C(P), G, \alpha)$. Moreover, TFAE:

- *r* is free in the classical sense, i. e., a principal bundle.
- $P \times G \rightarrow P \times P$, $(p,g) \mapsto (p,r(p,g))$ is injective.
- $(C(P), G, \alpha)$ is free in the sense of Ellwood.

Note: We have $C(P)^G \cong C(P/G)$.

Let $r: P \times G \rightarrow P$ be a continuous action on a compact space P. The map $\alpha: G \rightarrow Aut(C(P))$ given by

$$\alpha_g(f)(p) \coloneqq f(r(p,g))$$

yields a C^{*}-dynamical system ($C(P), G, \alpha$). Moreover, TFAE:

- r is free in the classical sense, i.e., a principal bundle.
- $P \times G \rightarrow P \times P$, $(p,g) \mapsto (p,r(p,g))$ is injective.
- $(C(P), G, \alpha)$ is free in the sense of Ellwood.

Note: We have $C(P)^G \cong C(P/G)$.

Let $r: P \times G \rightarrow P$ be a continuous action on a compact space P. The map $\alpha: G \rightarrow Aut(C(P))$ given by

$$\alpha_g(f)(p) \coloneqq f(r(p,g))$$

yields a C^{*}-dynamical system ($C(P), G, \alpha$). Moreover, TFAE:

- r is free in the classical sense, i.e., a principal bundle.
- $P \times G \rightarrow P \times P$, $(p, g) \mapsto (p, r(p, g))$ is injective.
- $(C(P), G, \alpha)$ is free in the sense of Ellwood.

Note: We have $C(P)^G \cong C(P/G)$.

More examples of free C*-dynamical systems

- Each quantum n-torus Tⁿ_θ together with its natural Tⁿ-action. We have T^{nTⁿ}_θ = C.
- Each crossed product $\mathcal{A} \rtimes_{\alpha} D$ with discrete Abelian D together with its natural dual action by \hat{D} . We have $(\mathcal{A} \rtimes_{\alpha} D)^{\hat{D}} = \mathcal{A}$.
- $C^*(H_3)$ of the discrete, 3-dim. Heisenberg group H_3 together with its (fibrewise) \mathbb{T}^2 -action. We have $C^*(H_3)^{\mathbb{T}^2} \cong C(\mathbb{T})$.
- Woronowicz's quantum SU(2) together with its natural gauge action. We have SU_q(2)^T = S²_q. (Quantum Hopf fibration).
- For a graph Γ with finitely many vertices the gauge action on C*(Γ) is free if and only if Γ is row-finite and has no sinks.
- The Connes-Landi sphere S⁷_θ admits an action by SU(2) which gives a free C*-dynamical system with fixed point algebra S⁴_{θ'}.

- The study and classification of actions of (quantum-) groups on C*-algebras is intrinsically interesting.
- Free actions are closely related to saturated Fell bundles, Hopf-Galois extensions, and strongly graded rings.
- NCPB's are becoming increasingly prevalent in applications to analysis, geometry, and mathematical physics, e.g.,:
 - Unbounded *KK*-theory
 - Noncommutative Riemannian geometry
 - Noncommutative gauge theory
 - TQTF's and T-duality

Frame bundles

The noncommutative geometry of principal bundles

The noncommutative geometry of frame bundles

Problem (Noncommutative frame bundles

Find an algebraic analogue of the geometric inducing procedure for frame bundles within the framework of free C^{*}-dynamical systems.

How?

Given a certain correspondence over \mathcal{B} which plays the role of the vector bundle associated with an ordinary frame bundle w.r.t. the standard representation π of SO(n), $n \ge 3$, let's say M, we provide a construction procedure, by means of unitary tensor functors, for a free C^{*}-dynamical system (\mathcal{A}_M , SO(n), α_M) with $\Gamma_{\mathcal{A}_M}(\pi) \cong M$.

Problem (Noncommutative frame bundles

Find an algebraic analogue of the geometric inducing procedure for frame bundles within the framework of free C^{*}-dynamical systems.

How?

Given a certain correspondence over \mathcal{B} which plays the role of the vector bundle associated with an ordinary frame bundle w.r.t. the standard representation π of SO(n), $n \ge 3$, let's say M, we provide a construction procedure, by means of unitary tensor functors, for a free C^{*}-dynamical system (\mathcal{A}_M , SO(n), α_M) with $\Gamma_{\mathcal{A}_M}(\pi) \cong M$.

Let (π, V) be the standard representation of SO(n), $n \ge 3$. We say that a correspondence M over \mathcal{B} is tensorial of type π if there exist injective linear maps

$$\varphi_{k,l} : C_{k,l} := \operatorname{Hom}_{\operatorname{SO}(n)} \left(V^{\otimes k}, V^{\otimes l} \right) \to \mathcal{L} \left(M^{\otimes k}, M^{\otimes l} \right)$$

for all $k, l \ge 0$ such that:

(C)
$$\varphi_{l,m}(T')\varphi_{k,l}(T) = \varphi_{k,m}(T'T),$$

(A) $\varphi_{k,l}(T)^* = \varphi_{l,k}(T^*),$
(U) $\varphi_{k,k}(id) = id,$
(T) $\varphi_{k,k}(T) \otimes_{\mathcal{B}} \varphi_{l,l}(T') = \varphi_{k+l}(T \otimes T')$

for all $k, l, m \ge 0$ and respective morphisms T, T'.

Let (π, V) be the standard representation of SO(n), $n \ge 3$. We say that a correspondence M over \mathcal{B} is tensorial of type π if there exist injective linear maps

$$\varphi_{k,l} : C_{k,l} := \operatorname{Hom}_{\operatorname{SO}(n)} \left(V^{\otimes k}, V^{\otimes l} \right) \to \mathcal{L} \left(M^{\otimes k}, M^{\otimes l} \right)$$

for all $k, l \ge 0$ such that:

(C)
$$\varphi_{l,m}(T')\varphi_{k,l}(T) = \varphi_{k,m}(T'T),$$

(A) $\varphi_{k,l}(T)^* = \varphi_{l,k}(T^*),$
(U) $\varphi_{k,k}(id) = id,$
(T) $\varphi_{k,k}(T) \otimes_{\mathcal{B}} \varphi_{l,l}(T') = \varphi_{k+l}(T \otimes T')$

for all $k, l, m \ge 0$ and respective morphisms T, T'.

- The main idea is to put together a unitary tensor functor Rep(SO(n)) → Corr(B) by means of M.
- In particular, we need "building blocks", i. e., a correspondence over B for each σ ∈ Irr(SO(n)).
- Crucially, each irreducible representation of SO(n) occurs as a subrepresentation of some (π^{⊗k}, V^{⊗k}), k ≥ 0.
- For each σ ∈ Irr(SO(n)) we choose a representative (σ, V_σ) that is a subrepresentation of some (π^{⊗k}, V^{⊗k}), k ≥ 0.
- We denote by P_σ the orthogonal projection of V^{⊗k} onto V_σ.

- The main idea is to put together a unitary tensor functor $\operatorname{Rep}(\operatorname{SO}(n)) \to \operatorname{Corr}(\mathcal{B})$ by means of M.
- In particular, we need "building blocks", i. e., a correspondence over B for each σ ∈ Irr(SO(n)).
- Crucially, each irreducible representation of SO(n) occurs as a subrepresentation of some (π^{⊗k}, V^{⊗k}), k ≥ 0.
- For each $\sigma \in Irr(SO(n))$ we choose a representative (σ, V_{σ}) that is a subrepresentation of some $(\pi^{\otimes k}, V^{\otimes k}), k \ge 0$.
- We denote by P_{σ} the orthogonal projection of $V^{\otimes k}$ onto V_{σ} .

- The main idea is to put together a unitary tensor functor $\operatorname{Rep}(\operatorname{SO}(n)) \to \operatorname{Corr}(\mathcal{B})$ by means of M.
- In particular, we need "building blocks", i. e., a correspondence over B for each σ ∈ Irr(SO(n)).
- Crucially, each irreducible representation of SO(n) occurs as a subrepresentation of some (π^{⊗k}, V^{⊗k}), k ≥ 0.
- For each $\sigma \in Irr(SO(n))$ we choose a representative (σ, V_{σ}) that is a subrepresentation of some $(\pi^{\otimes k}, V^{\otimes k}), k \ge 0$.
- We denote by P_{σ} the orthogonal projection of $V^{\otimes k}$ onto V_{σ} .

- The main idea is to put together a unitary tensor functor $\operatorname{Rep}(\operatorname{SO}(n)) \to \operatorname{Corr}(\mathcal{B})$ by means of M.
- In particular, we need "building blocks", i. e., a correspondence over B for each σ ∈ Irr(SO(n)).
- Crucially, each irreducible representation of SO(n) occurs as a subrepresentation of some (π^{⊗k}, V^{⊗k}), k ≥ 0.
- For each $\sigma \in Irr(SO(n))$ we choose a representative (σ, V_{σ}) that is a subrepresentation of some $(\pi^{\otimes k}, V^{\otimes k}), k \ge 0$.
- We denote by P_{σ} the orthogonal projection of $V^{\otimes k}$ onto V_{σ} .

- The main idea is to put together a unitary tensor functor $\operatorname{Rep}(\operatorname{SO}(n)) \to \operatorname{Corr}(\mathcal{B})$ by means of M.
- In particular, we need "building blocks", i. e., a correspondence over B for each σ ∈ Irr(SO(n)).
- Crucially, each irreducible representation of SO(n) occurs as a subrepresentation of some (π^{⊗k}, V^{⊗k}), k ≥ 0.
- For each σ ∈ Irr(SO(n)) we choose a representative (σ, V_σ) that is a subrepresentation of some (π^{⊗k}, V^{⊗k}), k ≥ 0.
- We denote by P_{σ} the orthogonal projection of $V^{\otimes k}$ onto V_{σ} .

- The main idea is to put together a unitary tensor functor $\operatorname{Rep}(\operatorname{SO}(n)) \to \operatorname{Corr}(\mathcal{B})$ by means of M.
- In particular, we need "building blocks", i. e., a correspondence over B for each σ ∈ Irr(SO(n)).
- Crucially, each irreducible representation of SO(n) occurs as a subrepresentation of some (π^{⊗k}, V^{⊗k}), k ≥ 0.
- For each σ ∈ Irr(SO(n)) we choose a representative (σ, V_σ) that is a subrepresentation of some (π^{⊗k}, V^{⊗k}), k ≥ 0.
- We denote by P_{σ} the orthogonal projection of $V^{\otimes k}$ onto V_{σ} .

- Clearly, $P_{\sigma} \in C_{k,k}$, and hence $\varphi_{k,k}(P_{\sigma})$ acts as an adjointable operator on $M^{\otimes k}$.
- (C) and (A) combined imply that φ_{k,k}(P_σ) is a projection, and from this it may be concluded that

$$\Gamma_M(\sigma) \coloneqq \varphi_{k,k}(P_{\sigma}) \left(M^{\otimes k} \right)$$

is a correspondence over \mathcal{B} . Note that $\Gamma_M(\pi) = M$.

• Now, we need to extend $\Gamma_M(\sigma)$ to all objects σ in Rep(SO(n)) and construct $\Gamma_M(T)$ for all morphisms T in Rep(SO(n))...

- Clearly, $P_{\sigma} \in C_{k,k}$, and hence $\varphi_{k,k}(P_{\sigma})$ acts as an adjointable operator on $M^{\otimes k}$.
- (C) and (A) combined imply that $\varphi_{k,k}(P_{\sigma})$ is a projection, and from this it may be concluded that

$$\Gamma_M(\sigma) \coloneqq \varphi_{k,k}(P_{\sigma}) \left(M^{\otimes k} \right)$$

is a correspondence over \mathcal{B} . Note that $\Gamma_M(\pi) = M$.

• Now, we need to extend $\Gamma_M(\sigma)$ to all objects σ in Rep(SO(n)) and construct $\Gamma_M(T)$ for all morphisms T in Rep(SO(n))...

- Clearly, $P_{\sigma} \in C_{k,k}$, and hence $\varphi_{k,k}(P_{\sigma})$ acts as an adjointable operator on $M^{\otimes k}$.
- (C) and (A) combined imply that $\varphi_{k,k}(P_{\sigma})$ is a projection, and from this it may be concluded that

$$\Gamma_{M}(\sigma) \coloneqq \varphi_{k,k}(P_{\sigma}) \left(M^{\otimes k} \right)$$

is a correspondence over \mathcal{B} . Note that $\Gamma_M(\pi) = M$.

• Now, we need to extend $\Gamma_M(\sigma)$ to all objects σ in Rep(SO(*n*)) and construct $\Gamma_M(T)$ for all morphisms T in Rep(SO(*n*))...

Theorem (W' 23)

Each correspondence M over \mathcal{B} that is tensorial of type π gives rise to a unitary tensor functor $\Gamma_M : \operatorname{Rep}(\operatorname{SO}(n)) \to \operatorname{Corr}(\mathcal{B})$ such that $\Gamma_M(\pi) = M$, and, in consequence, to a free C^{*}-dynamical system $(\mathcal{A}_M, \operatorname{SO}(n), \alpha_M)$ such that $\Gamma_{\mathcal{A}_M}(\pi) \cong \Gamma_M(\pi) = M$.

Theorem (W' 23)

The construction recovers the classical setting of frame bundles.

Remark/**Definition**

The latter result justifies to call the free C*-dynamical system $(\mathcal{A}_M, SO(n), \alpha_M)$ from the former result the *noncommutative* frame bundle associated with M.

Theorem (W' 23)

Each correspondence M over \mathcal{B} that is tensorial of type π gives rise to a unitary tensor functor $\Gamma_M : \operatorname{Rep}(\operatorname{SO}(n)) \to \operatorname{Corr}(\mathcal{B})$ such that $\Gamma_M(\pi) = M$, and, in consequence, to a free C^{*}-dynamical system $(\mathcal{A}_M, \operatorname{SO}(n), \alpha_M)$ such that $\Gamma_{\mathcal{A}_M}(\pi) \cong \Gamma_M(\pi) = M$.

Theorem (W' 23)

The construction recovers the classical setting of frame bundles.

Remark/**Definition**

The latter result justifies to call the free C*-dynamical system $(\mathcal{A}_M, SO(n), \alpha_M)$ from the former result the *noncommutative* frame bundle associated with M.

Theorem (W' 23)

Each correspondence M over \mathcal{B} that is tensorial of type π gives rise to a unitary tensor functor $\Gamma_M : \operatorname{Rep}(\operatorname{SO}(n)) \to \operatorname{Corr}(\mathcal{B})$ such that $\Gamma_M(\pi) = M$, and, in consequence, to a free C^{*}-dynamical system $(\mathcal{A}_M, \operatorname{SO}(n), \alpha_M)$ such that $\Gamma_{\mathcal{A}_M}(\pi) \cong \Gamma_M(\pi) = M$.

Theorem (W' 23)

The construction recovers the classical setting of frame bundles.

Remark/Definition

The latter result justifies to call the free C*-dynamical system $(\mathcal{A}_M, SO(n), \alpha_M)$ from the former result the *noncommutative* frame bundle associated with M.

Corollary (W' 23)

The map $[(\mathcal{A}, SO(n), \alpha)] \mapsto [\Gamma_{\mathcal{A}}(\pi)]$ yields a 1:1 correspondence between equivalence classes of free C*-dynamical systems with structure group SO(n) and fixed point algebra \mathcal{B} and equivalence classes of correspondences over \mathcal{B} that are tensorial of type π . Its inverse is given by $[M] \mapsto [(\mathcal{A}_M, SO(n), \alpha_M)].$

Thank you for your attention!

 S. Neshveyev. "Duality theory for nonergodic actions". In: *Münster J. Math.* 7.2 (2013), pp. 414–437. ISSN: 1867-5778; 1867-5786/e.