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Conventions (1)

e The letters P and X stand for locally compact spaces.
e The letter G stands for a compact group.

e All representations of G are assumed to be finite-dimensional
and unitary.

e We denote a representation o : G - U(V;) by the pair (o, V)
or simply by o when no ambiguity is possible.

e We write Rep(G) for the representation category of G.
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Principal bundles

A continuous action r: P x G — P is called a (topological) principal
bundle if r is free, i.e., all stabilizer groups are trivial.
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Principal bundles

A continuous action r: P x G — P is called a (topological) principal
bundle if r is free, i.e., all stabilizer groups are trivial.

The Hopf fibration

The canonical right action of S! on SU(2) is a principal bundle.
Moreover, SU(2)/S! = S2. This yields the famous Hopf fibration

St - SU(2) =S® - S2.
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Let r: P x G — P be a principal bundle.
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Associated vector bundles

Let r: P x G — P be a principal bundle.

For an object o in Rep(G) we obtain a hermitian vector bundle
over P/G by putting I'p(0) := (P xV,)/G.

For a morphism T in Rep(G) we obtain a bundle map of 'p(0)
by putting F(T)([(p. v]) = ([(p. T(V)]).

We thus get a functor I'p : Rep(G) — Vec,(P/G), Vec,(P/G)
being the category of hermitian vector bundles over P/G.

It is possible to reconstruct P from Fp up to isomorphism
(Tannaka-Krein duality theory).
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Frame bundles

Let g: E — X be a hermitian vector bundle with typical fibre V.
The frame bundle

Fr(E) := |_)|<Iso(V, (S52)), Ex:=q " ({x}),

carries the structure of a principal U(V)-bundle w.r. t. the canonical
right action of U(V) on Fr(E).
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Frame bundles

Let g: E — X be a hermitian vector bundle with typical fibre V.
The frame bundle

Fr(E) := |_)|<Iso(V, (S52)), Ex:=q " ({x}),

carries the structure of a principal U(V)-bundle w.r. t. the canonical
right action of U(V) on Fr(E).
Remark

e Let (m, V) be the standard representation (7, V) of U(V).
Then e gy () = (Fr(E) xV)/U(V) 2 E.

e If E is real and orientable, then we may consider the reduction
of Fr(E) to SO(n) given by orientation-preserving isometries.
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Why frame bundles?

e Frame bundles constitute a key tool for studying vector bundles.

e The frame bundle can be utilized in order to attach several new
vector bundles in a functorial manner.

e A connection on the frame bundle induces covariant derivatives
on all associated bundles in a coherent way, leading to a various
important geometric constructions, i.e.:

— In Riemannian geometry, the Levi-Civita connection on Fr(T X),
X being a manifold, induces a covariant derivative on the tensor
fields, leading, for instance, to the Riemannian curvature of X.

— In Riemannian spin geometry, a “spin connection” on Fr(T X),
X being a manifold, induces a covariant derivative on the spinor
bundle, leading to the Dirac operator on the the spinor bundle.
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Find an algebraic analogue of the geometric inducing procedure for
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The What and the Why

Find an algebraic analogue of the geometric inducing procedure for
frame bundles in the setting of C*-algebraic principal bundles.

This is part of a larger program with the purpose to give a novel
bundle-theoretic perspective on NC Riemannian spin geometry:

Lift Dirac operators to noncommutative principal bundles.
Propose a notion of noncommutative frame bundles.
Extend noncommutative principal bundles by central extensions.

Find new noncommutative Riemannian spin geometries.
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Conventions (1)

e The letters A and B stand for unital C*-algebras.

e We use Irr(G) to denote the set of equivalence classes of
irreducible representations.

e We write Corr(B) for the category of correspondences over 5.
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C*-dynamical systems

e By a C*-dynamical system we mean a triple (A, G, a) with a
strongly continuous group homomorphism a : G — Aut(A).
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C*-dynamical systems

e By a C*-dynamical system we mean a triple (A, G, a) with a
strongly continuous group homomorphism a : G — Aut(A).

e We typically write B for the corresponding fixed point algebra,
ie, Bi=A®:={xeA: (VgeG)ay(x)=x}.

e Like every representation of G, A can be decomposed into its
isotypic components A(o) := P,(A), o €Irr(G), where

P,(x) :=dim(o) - fGTr(a;) ag(x) dg, xeA.

That is, Gazlflrr(c) A(o) is a dense *-subalgebra of A.
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e For an object o in Rep(G) we put

Fa(o)={xeA®V,:(VgeG)ag®og(x)=x}.

Note that ' 4(1) = B, 1 being the trivial representation of G.

Each I 4(0o) is naturally a correspondence over B w.r. t.

— the canonical B-bimodule structure,
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Let (A, G, a) be a C*-dynamical system.

e For an object o in Rep(G) we put

Fa(o)={xeA®V,:(VgeG)ag®og(x)=x}.

Note that ' 4(1) = B, 1 being the trivial representation of G.

Each I 4(0o) is naturally a correspondence over B w.r. t.

— the canonical B-bimodule structure,

— the restriction of (a® v, b® w) 4 := (v, w)a*b to B.
Note that if (o, V) is irreducible, then T 4(7) ® V,; = A(0) via
the map defined by a@ ve w — a- (v, w).

For a morphism T in Rep(G) we put T 4(T):=14®T.
Note that I 4(T)* =T 4(T*) for all morphisms T in Rep(G).
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Associated vector bundles (I1)

e We thus get a linear functor I' 4 : Rep(G) — Corr(B) such that:

(i) T4(1)=8B.
(i) T4(T)* =T 4(T*) for all morphisms T in Rep(G).
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Associated vector bundles (I1)

e We thus get a linear functor I' 4 : Rep(G) — Corr(B) such that:

(i) Ta(1)=B
(i) T4(T)* =T 4(T*) for all morphisms T in Rep(G).

e \We have natural B-bilinear isometries
ma(o,7):TA(0) @ TA(T) > TA(6®T), Xx®y+ x12)13

for all objects o, 7 in Rep(G) such that:

(iii) ma(o,7®p) (id®s mA(T,p)) = ma(c®T,p) (Mma(o, T) ®pid)
for all objects o, T, p in Rep(G).
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Weak unitary tensor functors (Neshveyev, [1, Def. 2.1])

By a weak unitary tensor functor Rep(G) — Corr(BB) we mean

e a linear functor I : Rep(G) — Corr(B) together with

e natural B-bilinear isometries
m(o,7):T(oc)®pl (1) >T(c®T)
for all objects o, 7 in Rep(G)

such that:
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Weak unitary tensor functors (Neshveyev, [1, Def. 2.1])

By a weak unitary tensor functor Rep(G) — Corr(BB) we mean

e a linear functor I : Rep(G) — Corr(B) together with

e natural B-bilinear isometries
m(o,7):T(oc)®pl (1) >T(c®T)
for all objects o, 7 in Rep(G)
such that:

(i) r(1)=n8.
(i) T(T)* =0 (T*) for all morphisms T in Rep(G).
(iii) m(o,7®p) (id®gm(T,p)) =m(c®T,p)(m(o,7)®zid)
for all objects o, T, p in Rep(G).
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Duality theory for nonergodic actions

There is a 1:1 correspondence between C*-dynamical systems
(A, G, a) and weak unitary tensor functors Rep(G) — Corr(B).
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Freeness

A C*-dynamical system (A, G, a) is called free if the Ellwood map
®:A®g A—>C(GA), P(x®y)(g)=xag(y)

has dense range (w.r.t. the canonical C*-norm on C(G, A)).
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Freeness

A C*-dynamical system (A, G, a) is called free if the Ellwood map
®:AByg A—>C(G,A), P(x@y)(g) = xag(y)

has dense range (w.r.t. the canonical C*-norm on C(G, A)).

Remark (A characterization of freeness)

A C*-dynamical system (A, G, «) is free if and only if the induced
maps my (o, T) for all objects o, T in Rep(G) are unitary. That is,
there is a 1:1 correspondence between free C*-dynamical systems
(A, G,a) and unitary tensor functors Rep(G) — Corr(B).
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Classical actions

Let r: P x G — P be a continuous action on a compact space P.
The map a: G - Aut(C(P)) given by

ag(f)(p) :=f(r(p.g))

yields a C*-dynamical system (C(P), G, a).
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Classical actions

Let r: P x G — P be a continuous action on a compact space P.
The map a: G - Aut(C(P)) given by

ag(f)(p) = f(r(p.g))
yields a C*-dynamical system (C(P), G, a). Moreover, TFAE:

e ris free in the classical sense, i.e., a principal bundle.
e PxG—>PxP,(p,g)~(p r(p g))is injective.
e (C(P),G,a) is free in the sense of Ellwood.

Note: We have C(P)¢ = C(P/G).
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More examples of free C*-dynamical systems

e Each quantum n-torus Ty together with its natural T"-action.
We have ’]I‘ng =C.

e Each crossed product A x4 D with discrete Abelian D together
with its natural dual action by D. We have (A x4 D)b = A

e C*(H3) of the discrete, 3-dim. Heisenberg group H3z together
with its (fibrewise) T2-action. We have C”(H3)T2 =~ C(T).

e Woronowicz's quantum SU(2) together with its natural gauge
action. We have SU,(2)T = Sz. (Quantum Hopf fibration).

e For a graph I with finitely many vertices the gauge action on
C*(T) is free if and only if ' is row-finite and has no sinks.

e The Connes-Landi sphere S} admits an action by SU(2) which
gives a free C*-dynamical system with fixed point algebra S;,.
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Why studying free actions?

e The study and classification of actions of (quantum-) groups on
C*-algebras is intrinsically interesting.

e Free actions are closely related to saturated Fell bundles,
Hopf-Galois extensions, and strongly graded rings.
e NCPB's are becoming increasingly prevalent in applications to
analysis, geometry, and mathematical physics, e. g.,:
e Unbounded KK-theory
e Noncommutative Riemannian geometry

e Noncommutative gauge theory
TQTF's and T-duality
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The problem (again)

Find an algebraic analogue of the geometric inducing procedure for
frame bundles within the framework of free C*-dynamical systems.
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The problem (again)

Find an algebraic analogue of the geometric inducing procedure for
frame bundles within the framework of free C*-dynamical systems.

Given a certain correspondence over 13 which plays the role of the
vector bundle associated with an ordinary frame bundle w.r.t. the
standard representation 7 of SO(n), n >3, let's say M, we provide
a construction procedure, by means of unitary tensor functors, for a
free C*-dynamical system (Ap,SO(n), ap) with T 4,,(7) = M.
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The central notion (W’ 23)

Let (m, V) be the standard representation of SO(n), n> 3. We say
that a correspondence M over B is tensorial of type 7 if there exist

injective linear maps
@1+ Chs = Homso(my (V& V') » £(M®*, M®')

for all k, />0 such that:
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The central notion (W’ 23)

Let (m, V) be the standard representation of SO(n), n> 3. We say
that a correspondence M over B is tensorial of type 7 if there exist
injective linear maps

@1+ Chs = Homso(my (V& V') » £(M®*, M®')
for all k, />0 such that:

(C) @1.m(Teki(T) = P,m(T'T),
(A) @k i(T) =1 k(T),
(U) @kk(id) =id

(T) @k k(T) @B @11(T') = pre(TOT")

for all k,/,m >0 and respective morphisms T, T".
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Let M be a correspondence over B that is tensorial of type .

e The main idea is to put together a unitary tensor functor
Rep(SO(n)) — Corr(B) by means of M.

e In particular, we need “building blocks”, i.e., a correspondence
over B for each o € Irr(SO(n)).

e Crucially, each irreducible representation of SO(n) occurs as a
subrepresentation of some (7®%, V®k), k> 0.

e For each o € Irr(SO(n)) we choose a representative (o, V;)
that is a subrepresentation of some (7r®k, V®k), k > 0.

e We denote by P, the orthogonal projection of V®* onto V.

24/29



The main idea of the construction (I1)

e Clearly, P, € Ck k, and hence gy «(P5) acts as an adjointable
operator on M®X,
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The main idea of the construction (I1)

e Clearly, P, € Ck k, and hence gy «(P5) acts as an adjointable
operator on M®X,

e (C) and (A) combined imply that ¢ «(P,) is a projection, and
from this it may be concluded that

Tv(0) = prk(Pr) (M®X)

is a correspondence over B. Note that I'y(7) = M.

e Now, we need to extend 'y (o) to all objects o in Rep(SO(n))
and construct 'y (T) for all morphisms T in Rep(SO(n))...
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The main results (1)

Each correspondence M over B that is tensorial of type 7 gives rise
to a unitary tensor functor I'p; : Rep(SO(n)) — Corr(B) such that
Fm(7) = M, and, in consequence, to a free C*-dynamical system
(Anm,SO(n), apm) such that T 4,,(m) = Ty(m) = M.
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The main results (1)

Each correspondence M over B that is tensorial of type 7 gives rise
to a unitary tensor functor I'p; : Rep(SO(n)) — Corr(B) such that
Fm(7) = M, and, in consequence, to a free C*-dynamical system
(Anm,SO(n), apm) such that T 4,,(m) = Ty(m) = M.

The construction recovers the classical setting of frame bundles.

The latter result justifies to call the free C*-dynamical system
(Apm,SO(n), apg) from the former result the noncommutative

frame bundle associated with M.

26/29



The main results (1)

The map [(A,SO(n),a)] ~ [[a(m)] yields a 1:1 correspondence
between equivalence classes of free C*-dynamical systems with
structure group SO(n) and fixed point algebra B and equivalence
classes of correspondences over B that are tensorial of type 7. Its
inverse is given by [M] — [(Apm,SO(n), aem)].
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Thank you for your attention!
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