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Conventions (I)

• The letters P and X stand for locally compact spaces.

• The letter G stands for a compact group.

• All representations of G are assumed to be finite-dimensional
and unitary.

• We denote a representation ff ∶ G → U(Vff) by the pair (ff; Vff)
or simply by ff when no ambiguity is possible.

• We write Rep(G) for the representation category of G.
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Principal bundles

A continuous action r ∶ P × G → P is called a (topological) principal
bundle if r is free, i. e., all stabilizer groups are trivial.

The Hopf fibration

The canonical right action of S1 on SU(2) is a principal bundle.
Moreover, SU(2)/S1 ≅ S2. This yields the famous Hopf fibration

S1 ↪ SU(2) ≅ S3↠ S2:
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Associated vector bundles

Let r ∶ P × G → P be a principal bundle.

• For an object ff in Rep(G) we obtain a hermitian vector bundle
over P /G by putting ΓP (ff) ∶= (P × Vff)/G.

• For a morphism T in Rep(G) we obtain a bundle map of ΓP (ff)
by putting Γ(T )([(p; v]) ∶= ([(p; T (v)]).

• We thus get a functor ΓP ∶ Rep(G)→ Vech(P /G), Vech(P /G)
being the category of hermitian vector bundles over P /G.

• It is possible to reconstruct P from FP up to isomorphism
(Tannaka-Krein duality theory).
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Frame bundles

Let q ∶ E → X be a hermitian vector bundle with typical fibre V .
The frame bundle

Fr(E) ∶= ⊔
x∈X

Iso (V;Ex) ; Ex ∶= q−1({x});

carries the structure of a principal U(V )-bundle w. r. t. the canonical
right action of U(V ) on Fr(E).

Remark

• Let (ı; V ) be the standard representation (ı; V ) of U(V ).
Then ΓFr(E)(ı) = (Fr(E) × V )/U(V ) ≅ E.

• If E is real and orientable, then we may consider the reduction
of Fr(E) to SO(n) given by orientation-preserving isometries.
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Why frame bundles?

• Frame bundles constitute a key tool for studying vector bundles.

• The frame bundle can be utilized in order to attach several new
vector bundles in a functorial manner.

• A connection on the frame bundle induces covariant derivatives
on all associated bundles in a coherent way, leading to a various
important geometric constructions, i. e.:

– In Riemannian geometry, the Levi-Civita connection on Fr(TX),
X being a manifold, induces a covariant derivative on the tensor
fields, leading, for instance, to the Riemannian curvature of X.

– In Riemannian spin geometry, a “spin connection” on Fr(TX),
X being a manifold, induces a covariant derivative on the spinor
bundle, leading to the Dirac operator on the the spinor bundle.
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The What and the Why

The What
Find an algebraic analogue of the geometric inducing procedure for
frame bundles in the setting of C∗-algebraic principal bundles.

The Why
This is part of a larger program with the purpose to give a novel
bundle-theoretic perspective on NC Riemannian spin geometry:

• Lift Dirac operators to noncommutative principal bundles.

• Propose a notion of noncommutative frame bundles.

• Extend noncommutative principal bundles by central extensions.

• Find new noncommutative Riemannian spin geometries.
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Conventions (II)

• The letters A and B stand for unital C∗-algebras.

• We use Irr(G) to denote the set of equivalence classes of
irreducible representations.

• We write Corr(B) for the category of correspondences over B.
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C∗-dynamical systems

• By a C∗-dynamical system we mean a triple (A; G;¸) with a
strongly continuous group homomorphism ¸ ∶ G → Aut(A).

• We typically write B for the corresponding fixed point algebra,
i. e., B ∶= AG ∶= {x ∈ A ∶ (∀g ∈ G)¸g(x) = x}.

• Like every representation of G, A can be decomposed into its
isotypic components A(ff) ∶= Pff(A), ff ∈ Irr(G), where

Pff(x) ∶= dim(ff) ⋅ ∫
G

Tr(ff∗g)¸g(x) dg; x ∈ A:

That is, ⊕alg
ff∈Irr(G)A(ff) is a dense ∗-subalgebra of A.
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Associated vector bundles (I)

Let (A; G;¸) be a C∗-dynamical system.

• For an object ff in Rep(G) we put

ΓA(ff) ∶= {x ∈ A⊗ Vff ∶ (∀g ∈ G)¸g ⊗ ffg(x) = x}:

• Note that ΓA(1) = B, 1 being the trivial representation of G.
• Each ΓA(ff) is naturally a correspondence over B w. r. t.

– the canonical B-bimodule structure,
– the restriction of ⟨a⊗ v; b ⊗w⟩A ∶= ⟨v;w⟩a∗b to B.

• Note that if (ff; Vff) is irreducible, then ΓA(ff̄)⊗ Vff ≅ A(ff) via
the map defined by a⊗ v̄ ⊗w ↦ a ⋅ ⟨v;w⟩.

• For a morphism T in Rep(G) we put ΓA(T ) ∶= 1A ⊗ T .
• Note that ΓA(T )∗ = ΓA(T ∗) for all morphisms T in Rep(G).
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Associated vector bundles (II)

• We thus get a linear functor ΓA ∶ Rep(G)→ Corr(B) such that:
(i) ΓA(1) = B.
(ii) ΓA(T )∗ = ΓA(T ∗) for all morphisms T in Rep(G).

• We have natural B-bilinear isometries

mA(ff; fi) ∶ ΓA(ff)⊗B ΓA(fi)→ ΓA(ff ⊗ fi); x ⊗ y ↦ x12y13

for all objects ff; fi in Rep(G) such that:
(iii) mA(ff; fi ⊗) (id⊗BmA(fi; )) = mA(ff⊗fi; ) (mA(ff; fi)⊗B id)

for all objects ff; fi;  in Rep(G).
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Weak unitary tensor functors (Neshveyev, [1, Def. 2.1])

By a weak unitary tensor functor Rep(G)→ Corr(B) we mean

• a linear functor Γ ∶ Rep(G)→ Corr(B) together with

• natural B-bilinear isometries

m(ff; fi) ∶ Γ(ff)⊗B Γ(fi)→ Γ(ff ⊗ fi)

for all objects ff; fi in Rep(G)

such that:

(i) Γ(1) = B.
(ii) Γ(T )∗ = Γ(T ∗) for all morphisms T in Rep(G).
(iii) m(ff; fi ⊗ ) (id⊗Bm(fi; )) = m(ff ⊗ fi; ) (m(ff; fi)⊗B id)

for all objects ff; fi;  in Rep(G).
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for all objects ff; fi in Rep(G)

such that:

(i) Γ(1) = B.
(ii) Γ(T )∗ = Γ(T ∗) for all morphisms T in Rep(G).
(iii) m(ff; fi ⊗ ) (id⊗Bm(fi; )) = m(ff ⊗ fi; ) (m(ff; fi)⊗B id)

for all objects ff; fi;  in Rep(G).
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Duality theory for nonergodic actions

Theorem (Neshveyev, [1, Thm. 2.3])
There is a 1:1 correspondence between C∗-dynamical systems
(A; G;¸) and weak unitary tensor functors Rep(G)→ Corr(B).
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Freeness

A C∗-dynamical system (A; G;¸) is called free if the Ellwood map

Φ ∶ A⊗alg A→ C(G;A); Φ(x ⊗ y)(g) ∶= x¸g(y)

has dense range (w. r. t. the canonical C∗-norm on C(G;A)).

Remark (A characterization of freeness)

A C∗-dynamical system (A; G;¸) is free if and only if the induced
maps mA(ff; fi) for all objects ff; fi in Rep(G) are unitary. That is,
there is a 1:1 correspondence between free C∗-dynamical systems
(A; G;¸) and unitary tensor functors Rep(G)→ Corr(B).
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Classical actions

Let r ∶ P × G → P be a continuous action on a compact space P .
The map ¸ ∶ G → Aut(C(P )) given by

¸g(f )(p) ∶= f (r(p; g))

yields a C∗-dynamical system (C(P ); G;¸). Moreover, TFAE:

• r is free in the classical sense, i. e., a principal bundle.

• P × G → P × P , (p; g)↦ (p; r(p; g)) is injective.

• (C(P ); G;¸) is free in the sense of Ellwood.

Note: We have C(P )G ≅ C(P /G).
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More examples of free C∗-dynamical systems

• Each quantum n-torus Tn„ together with its natural Tn-action.
We have Tn„

Tn

= C.
• Each crossed product A ⋊¸ D with discrete Abelian D together
with its natural dual action by D̂. We have (A ⋊¸ D)D̂ = A.

• C∗(H3) of the discrete, 3-dim. Heisenberg group H3 together
with its (fibrewise) T2-action. We have C∗(H3)T

2 ≅ C(T).
• Woronowicz’s quantum SU(2) together with its natural gauge

action. We have SUq(2)T = S2
q. (Quantum Hopf fibration).

• For a graph Γ with finitely many vertices the gauge action on
C∗(Γ) is free if and only if Γ is row-finite and has no sinks.

• The Connes-Landi sphere S7„ admits an action by SU(2) which
gives a free C∗-dynamical system with fixed point algebra S4„′ .

19/29



Why studying free actions?

• The study and classification of actions of (quantum-) groups on
C∗-algebras is intrinsically interesting.

• Free actions are closely related to saturated Fell bundles,
Hopf-Galois extensions, and strongly graded rings.

• NCPB’s are becoming increasingly prevalent in applications to
analysis, geometry, and mathematical physics, e. g.,:

• Unbounded KK-theory
• Noncommutative Riemannian geometry
• Noncommutative gauge theory
• TQTF’s and T-duality
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The problem (again)

Problem (Noncommutative frame bundles
Find an algebraic analogue of the geometric inducing procedure for
frame bundles within the framework of free C∗-dynamical systems.

How?
Given a certain correspondence over B which plays the role of the
vector bundle associated with an ordinary frame bundle w. r. t. the
standard representation ı of SO(n), n ≥ 3, let’s say M, we provide
a construction procedure, by means of unitary tensor functors, for a
free C∗-dynamical system (AM ;SO(n); ¸M) with ΓAM

(ı) ≅M.
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The central notion (W’ 23)

Let (ı; V ) be the standard representation of SO(n), n ≥ 3. We say
that a correspondence M over B is tensorial of type ı if there exist
injective linear maps

’k;l ∶ Ck;l ∶= HomSO(n) (V ⊗k ; V ⊗l)→ L(M⊗k ;M⊗l)

for all k; l ≥ 0 such that:

(C) ’l ;m(T ′)’k;l(T ) = ’k;m(T ′T ),
(A) ’k;l(T )∗ = ’l ;k(T ∗),
(U) ’k;k(id) = id,

(T) ’k;k(T )⊗B ’l ;l(T ′) = ’k+l(T ⊗ T ′)

for all k; l ;m ≥ 0 and respective morphisms T; T ′.
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The main idea of the construction (I)

Let M be a correspondence over B that is tensorial of type ı.

• The main idea is to put together a unitary tensor functor
Rep(SO(n))→ Corr(B) by means of M.

• In particular, we need “building blocks”, i. e., a correspondence
over B for each ff ∈ Irr(SO(n)).

• Crucially, each irreducible representation of SO(n) occurs as a
subrepresentation of some (ı⊗k ; V ⊗k), k ≥ 0.

• For each ff ∈ Irr(SO(n)) we choose a representative (ff; Vff)
that is a subrepresentation of some (ı⊗k ; V ⊗k), k ≥ 0.

• We denote by Pff the orthogonal projection of V ⊗k onto Vff.
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The main idea of the construction (II)

• Clearly, Pff ∈ Ck;k , and hence ’k;k(Pff) acts as an adjointable
operator on M⊗k .

• (C) and (A) combined imply that ’k;k(Pff) is a projection, and
from this it may be concluded that

ΓM(ff) ∶= ’k;k(Pff) (M⊗k)

is a correspondence over B. Note that ΓM(ı) =M.

• Now, we need to extend ΓM(ff) to all objects ff in Rep(SO(n))
and construct ΓM(T ) for all morphisms T in Rep(SO(n))...

25/29



The main idea of the construction (II)

• Clearly, Pff ∈ Ck;k , and hence ’k;k(Pff) acts as an adjointable
operator on M⊗k .

• (C) and (A) combined imply that ’k;k(Pff) is a projection, and
from this it may be concluded that

ΓM(ff) ∶= ’k;k(Pff) (M⊗k)

is a correspondence over B. Note that ΓM(ı) =M.

• Now, we need to extend ΓM(ff) to all objects ff in Rep(SO(n))
and construct ΓM(T ) for all morphisms T in Rep(SO(n))...

25/29



The main idea of the construction (II)

• Clearly, Pff ∈ Ck;k , and hence ’k;k(Pff) acts as an adjointable
operator on M⊗k .

• (C) and (A) combined imply that ’k;k(Pff) is a projection, and
from this it may be concluded that

ΓM(ff) ∶= ’k;k(Pff) (M⊗k)

is a correspondence over B. Note that ΓM(ı) =M.

• Now, we need to extend ΓM(ff) to all objects ff in Rep(SO(n))
and construct ΓM(T ) for all morphisms T in Rep(SO(n))...

25/29



The main results (I)

Theorem (W’ 23)
Each correspondence M over B that is tensorial of type ı gives rise
to a unitary tensor functor ΓM ∶ Rep(SO(n))→ Corr(B) such that
ΓM(ı) =M, and, in consequence, to a free C∗-dynamical system
(AM ;SO(n); ¸M) such that ΓAM

(ı) ≅ ΓM(ı) =M.

Theorem (W’ 23)
The construction recovers the classical setting of frame bundles.

Remark/Definition
The latter result justifies to call the free C∗-dynamical system
(AM ;SO(n); ¸M) from the former result the noncommutative
frame bundle associated with M.
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The main results (II)

Corollary (W’ 23)

The map [(A;SO(n); ¸)]↦ [ΓA(ı)] yields a 1:1 correspondence
between equivalence classes of free C∗-dynamical systems with
structure group SO(n) and fixed point algebra B and equivalence
classes of correspondences over B that are tensorial of type ı. Its
inverse is given by [M]↦ [(AM ;SO(n); ¸M)].
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Thank you for your attention!
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