Group-Graded Rings with UGN

Karl Lorensen (speaker) Pennsylvania State University, Altoona College, USA

Johan Öinert (coauthor) BTH, Sweden

March 28, 2023

Karl Lorensen (speaker) Pennsylvania State U

Group-Graded Rings with UGN

Karl Lorensen (speaker) Pennsylvania State U Group-Graded Rings with UGN

イロト イヨト イヨト イヨト

2

Let G be a group and R a ring graded by G.

イロト イボト イヨト イヨト

Let G be a group and R a ring graded by G.

Assume that R_1 has UGN.

イロト イボト イヨト イヨト

Let G be a group and R a ring graded by G.

Assume that R_1 has UGN.

What conditions on R and G will guarantee that R has UGN?

Karl Lorensen (speaker) Pennsylvania State U

- 4 回 ト 4 三 ト 4 三 ト

Let G be a group and R a ring graded by G.

Assume that R_1 has UGN.

What conditions on R and G will guarantee that R has UGN?

One obvious answer: If R is the group ring of G over R_1 , then R must have UGN.

Karl Lorensen (speaker) Pennsylvania State U

ヘロト 人間ト ヘヨト ヘヨト

イロン イ理 とくほとう ほんし

3

Let R be a ring graded by a group G.

イロト イボト イヨト イヨト

Let R be a ring graded by a group G.

The grading is *full* if $R_g \neq 0$ for all $g \in G$.

3

イロト 不得 トイヨト イヨト

Let R be a ring graded by a group G.

The grading is *full* if $R_g \neq 0$ for all $g \in G$.

The grading is *free* if R_g is a finitely generated free module for every $g \in G$.

Let R be a ring graded by a group G.

The grading is *full* if $R_g \neq 0$ for all $g \in G$.

The grading is *free* if R_g is a finitely generated free module for every $g \in G$. (**Example:** crossed product.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let R be a ring graded by a group G.

The grading is *full* if $R_g \neq 0$ for all $g \in G$.

The grading is *free* if R_g is a finitely generated free module for every $g \in G$. (**Example:** crossed product.)

The grading is *projective* if R_g is a finitely generated projective module for every $g \in G$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let R be a ring graded by a group G.

The grading is *full* if $R_g \neq 0$ for all $g \in G$.

The grading is *free* if R_g is a finitely generated free module for every $g \in G$. (**Example:** crossed product.)

The grading is *projective* if R_g is a finitely generated projective module for every $g \in G$. (**Example:** strongly graded ring.)

イロト 不得下 イヨト イヨト 二日

Karl Lorensen (speaker) Pennsylvania State U Group-Graded Rings with UGN

(日)

Amenability

Karl Lorensen (speaker) Pennsylvania State U

Group-Graded Rings with UGN

March 28, 2023

イロト イボト イヨト イヨト

Amenability

Supramenability

Karl Lorensen (speaker) Pennsylvania State U

Group-Graded Rings with UGN

March 28, 2023

イロト イボト イヨト イヨト

Amenability

Supramenability

Local finiteness

Karl Lorensen (speaker) Pennsylvania State U

Group-Graded Rings with UGN

March 28, 2023

< ロ > < 同 > < 回 > < 回 > < 回 > <

Karl Lorensen (speaker) Pennsylvania State U Group-Graded Rings with UGN

(日)

Theorem A

Let G be a group. Then the following statements are equivalent.

Karl Lorensen (speaker) Pennsylvania State U

Group-Graded Rings with UGN

March 28, 2023

< 1[™] >

Theorem A

Let G be a group. Then the following statements are equivalent.

G is amenable.

Karl Lorensen (speaker) Pennsylvania State U

< 47 →

Theorem A

Let G be a group. Then the following statements are equivalent.

- G is amenable.
- Every ring freely and fully graded by G has UGN if and only if its base ring has UGN.

Theorem A

Let G be a group. Then the following statements are equivalent.

- G is amenable.
- Every ring freely and fully graded by G has UGN if and only if its base ring has UGN.
- Every crossed product of G over a ring R₁ has UGN if and only if R₁ has UGN.

Theorem A

Let G be a group. Then the following statements are equivalent.

- G is amenable.
- Every ring freely and fully graded by G has UGN if and only if its base ring has UGN.
- Every crossed product of G over a ring R₁ has UGN if and only if R₁ has UGN.
- Every skew group ring of G over a ring R₁ has UGN if and only if R₁ has UGN.

Supramenable group; free grading

Karl Lorensen (speaker) Pennsylvania State U Group-Graded Rings with UGN

(日)

Supramenable group; free grading

Theorem B

Let R be a ring that is freely graded by a supramenable group G. Then R has UGN if and only if R_1 has UGN.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Supramenable group; free grading

Theorem B

Let R be a ring that is freely graded by a supramenable group G. Then R has UGN if and only if R_1 has UGN.

Open Question

Let R be a ring that is freely graded by an amenable group G. If R_1 has UGN, does it necessarily follow that R has UGN?

Karl Lorensen (speaker) Pennsylvania State U Group-Graded Rings with UGN

イロト イヨト イヨト イヨト

3

Theorem C

Let G be an infinite cyclic group.

Karl Lorensen (speaker) Pennsylvania State U

イロト イポト イヨト イヨト

Theorem C

Let G be an infinite cyclic group. Then there exists a ring R such that

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem C

Let G be an infinite cyclic group. Then there exists a ring R such that

R is fully and projectively graded by G,

< (17) > < (27 >)

- ∢ ⊒ →

Theorem C

Let G be an infinite cyclic group. Then there exists a ring R such that

R is fully and projectively graded by G,

R₁ has UGN,

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem C

Let G be an infinite cyclic group. Then there exists a ring R such that

R is fully and projectively graded by G,

R₁ has UGN,

but R does not have UGN.

< (17) > < (17) > <

- ∢ ⊒ →

Theorem C

Let G be an infinite cyclic group. Then there exists a ring R such that

R is fully and projectively graded by G,

R₁ has UGN,

but R does not have UGN.

Theorem D

Any ring projectively graded by a locally finite group has UGN if and only if its base ring has UGN.

Karl Lorensen (speaker) Pennsylvania State U

< 1 k

<ロト <回ト < 回ト < 回ト < 回ト -

3

Proposition A

Let G be a group and R a ring freely graded by G.

< □ > < 同 > < 回 > < 回 > < 回 >

Proposition A

Let G be a group and R a ring freely graded by G. Let $X \subseteq G$ be the support of R.

(4) (日本)

Proposition A

Let G be a group and R a ring freely graded by G. Let $X \subseteq G$ be the support of R. If X is amenable with respect to G, then R has UGN if and only if R_1 has UGN.

< (17) > < (17) > <

Proposition A

Let G be a group and R a ring freely graded by G. Let $X \subseteq G$ be the support of R. If X is amenable with respect to G, then R has UGN if and only if R_1 has UGN.

This is proved by embedding R in the translation ring $T_G(X, T(\mathbb{Z}, R_1))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

8/9

Proposition A

Let G be a group and R a ring freely graded by G. Let $X \subseteq G$ be the support of R. If X is amenable with respect to G, then R has UGN if and only if R_1 has UGN.

This is proved by embedding R in the *translation ring* $T_G(X, T(\mathbb{Z}, R_1))$. Then we apply:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposition A

Let G be a group and R a ring freely graded by G. Let $X \subseteq G$ be the support of R. If X is amenable with respect to G, then R has UGN if and only if R_1 has UGN.

This is proved by embedding R in the *translation ring* $T_G(X, T(\mathbb{Z}, R_1))$. Then we apply:

Proposition B

Let G be a group and X a subset of G. Then the following two statements are equivalent.

Proposition A

Let G be a group and R a ring freely graded by G. Let $X \subseteq G$ be the support of R. If X is amenable with respect to G, then R has UGN if and only if R_1 has UGN.

This is proved by embedding R in the *translation ring* $T_G(X, T(\mathbb{Z}, R_1))$. Then we apply:

Proposition B

Let G be a group and X a subset of G. Then the following two statements are equivalent.

() For every ring R, the ring $T_G(X, R)$ has UGN if and only if R has UGN.

Proposition A

Let G be a group and R a ring freely graded by G. Let $X \subseteq G$ be the support of R. If X is amenable with respect to G, then R has UGN if and only if R_1 has UGN.

This is proved by embedding R in the *translation ring* $T_G(X, T(\mathbb{Z}, R_1))$. Then we apply:

Proposition B

Let G be a group and X a subset of G. Then the following two statements are equivalent.

- For every ring R, the ring T_G(X, R) has UGN if and only if R has UGN.
- The subset X is amenable with respect to G.

Karl Lorensen (speaker) Pennsylvania State U Group-Graded Rings with UGN

イロト イボト イヨト イヨト

Corollary

For any group G, the following two assertions are equivalent.

∃ →

< (17) > < (17) > <

Corollary

For any group G, the following two assertions are equivalent.

G is amenable.

∃ →

< A > <

∃ >

Corollary

For any group G, the following two assertions are equivalent.

G is amenable.

(1) For any ring R, the ring T(G, R) has UGN if and only if R has UGN.

Corollary

For any group G, the following two assertions are equivalent.

- G is amenable.
- **(**) For any ring R, the ring T(G, R) has UGN if and only if R has UGN.

Corollary

For any group G, the following two assertions are equivalent.

Corollary

For any group G, the following two assertions are equivalent.

- G is amenable.
- **(**) For any ring R, the ring T(G, R) has UGN if and only if R has UGN.

Corollary

For any group G, the following two assertions are equivalent.

G is supramenable.

Corollary

For any group G, the following two assertions are equivalent.

- G is amenable.
- **(**) For any ring R, the ring T(G, R) has UGN if and only if R has UGN.

Corollary

For any group G, the following two assertions are equivalent.

- G is supramenable.
- **(b)** For any ring R and nonempty set $X \subseteq G$, the ring $T_G(X, R)$ has UGN if and only if R has UGN.