Lie algebra modules which are free over a subalgebra SNAG-workshop 2023

Jonathan Nilsson

Linköping University

Part I

Lie algebras and their representations

$$\mathfrak{gl}_n = M_{n \times n}(\mathbb{C})$$
 with $[A, B] := AB - BA$ for $A, B \in \mathfrak{gl}_n$.

$$\mathfrak{gl}_n=M_{n imes n}(\mathbb{C})$$
 with $[A,B]:=AB-BA$ for $A,B\in\mathfrak{gl}_n$.

Ado's theorem

Every finite dimensional complex Lie algebra \mathfrak{g} is isomorphic to a subalgebra of \mathfrak{gl}_n

$$\mathfrak{gl}_n=M_{n imes n}(\mathbb{C})$$
 with $[A,B]:=AB-BA$ for $A,B\in\mathfrak{gl}_n$.

Ado's theorem

Every finite dimensional complex Lie algebra \mathfrak{g} is isomorphic to a subalgebra of \mathfrak{gl}_n

Example

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \qquad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad \qquad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $\mathfrak{sl}_2 = \mathrm{span}(x, y, h)$, where [h, x] = 2x, [h, y] = -2y, [x, y] = h.

Universal enveloping algebra

$$U(\mathfrak{g})=T(\mathfrak{g})/<[x,y]-(xy-yx)>$$

$$U(\mathfrak{g})=T(\mathfrak{g})/<[x,y]-(xy-yx)>$$

PBW-Theorem

if x_1, \ldots, x_n is an ordered basis for \mathfrak{g} , the monomials $\{x_1^{a_1} \cdots x_n^{a_n} | a_i \ge 0\}$ is a basis for $U(\mathfrak{g})$.

$$U(\mathfrak{g})=T(\mathfrak{g})/<[x,y]-(xy-yx)>$$

PBW-Theorem

if x_1, \ldots, x_n is an ordered basis for \mathfrak{g} , the monomials $\{x_1^{a_1} \cdots x_n^{a_n} | a_i \ge 0\}$ is a basis for $U(\mathfrak{g})$.

Example

$$U(\mathfrak{sl}_2) = \operatorname{span}\{y^a h^b x^c \mid a, b, c \ge 0\}$$

A representation of \mathfrak{g} : a Lie algebra homomorphism $\mathfrak{g} \to \operatorname{End}(V)$.

Equivalently, V is a Lie algebra module for \mathfrak{g} .

Equivalently, V is a module for the associative algebra $U(\mathfrak{g})$.

Classification of finite-dimensional modules is easy (Killing-Cartan 1913).

Classification of finite-dimensional modules is easy (Killing-Cartan 1913).

But the problem is hard in general, J. Dixmier writes:

But a deeper study reveals the existence of an enormous number of irreducible representations of \mathfrak{h} [...]. It seems that these representations defy classification. A similar phenomenon exists for $\mathfrak{g} = \mathfrak{sl}_2$, and most certainly for all nonabelian Lie algebras.

Block's Theorem

Simple \mathfrak{sl}_2 -modules come in three types:

- **Highest weight modules** modules for which x has an eigenvector with eigenvalue zero, $x \cdot v = 0$.
- Whittaker modules modules for which x has an eigenvector with nonzero eigenvalue, $x \cdot v = \lambda v$, $\lambda \neq 0$.
- Third type modules these are in bijective correspondence with pairs $(\gamma, [a])$, where $\gamma \in \mathbb{C}$ and [a] is a similarity class of irreducible elements of $\mathbb{C}(z)[\frac{d}{dx}]$.

Complete classification of simple \mathfrak{g} -modules is considered a wild problem.

Complete classification of simple g-modules is considered a wild problem.

Idea: study certain families of ${\mathfrak{g}}\text{-modules}$ with "nice" properties such as

- Finite dimensional modules (Killing-Cartan 1913)
- Weight modules with finite dimensional weight spaces (Mathieu 2000)
- \bullet Modules in category ${\cal O}$
- Whittaker modules
- Gelfand-Zetlin modules

Triangular decomposition

$$\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$$

Triangular decomposition

$$\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$$

Decomposition of \mathfrak{sl}_n

Triangular decomposition

$$\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$$

Decomposition of \mathfrak{sl}_n

Decomposition of \mathfrak{sl}_n

For
$$\mathfrak{sl}_2$$
, we defined $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Take $\mathfrak{n}_+, \mathfrak{h}, \mathfrak{n}_-$ as the span of x, h, y respectively.

Jonathan Nilsson (Linköping University) Lie algebra modules which are free over a subalgebra

Weight modules

In a weight module V, the subalgebra \mathfrak{h} acts diagonally:

$$V = igoplus_{\lambda \in \mathfrak{h}^*} V_\lambda, \qquad h \cdot v = \lambda(h) v \quad ext{ for } h \in \mathfrak{h}, v \in V_\lambda$$

Every finite-dimensional g-module is a weight module.

Weight modules

In a weight module V, the subalgebra \mathfrak{h} acts diagonally:

$$V = igoplus_{\lambda \in \mathfrak{h}^*} V_\lambda, \qquad h \cdot v = \lambda(h) v \quad ext{ for } h \in \mathfrak{h}, v \in V_\lambda$$

Every finite-dimensional \mathfrak{g} -module is a weight module.

More generally, in a generalized weight module, \mathfrak{h} acts locally finitely: dim $U(\mathfrak{h})v < \infty$ for each $v \in V$.

dim $U(\mathfrak{n}_+)v < \infty$ for each $v \in W$.

dim $U(\mathfrak{n}_+)v < \infty$ for each $v \in W$.

Here's how one can construct them: Pick a homomorphism $\eta : \mathfrak{n}^+ \to \mathbb{C}$, and let \mathfrak{n}^+ act on \mathbb{C}_η by η .

dim $U(\mathfrak{n}_+)v < \infty$ for each $v \in W$.

Here's how one can construct them: Pick a homomorphism $\eta : \mathfrak{n}^+ \to \mathbb{C}$, and let \mathfrak{n}^+ act on \mathbb{C}_η by η .

 $W_\eta = U(\mathfrak{g}) \otimes_{U(\mathfrak{n}^+)} \mathbb{C}_\eta$

dim $U(\mathfrak{n}_+)v < \infty$ for each $v \in W$.

Here's how one can construct them: Pick a homomorphism $\eta : \mathfrak{n}^+ \to \mathbb{C}$, and let \mathfrak{n}^+ act on \mathbb{C}_η by η .

$$W_\eta = U(\mathfrak{g}) \otimes_{U(\mathfrak{n}^+)} \mathbb{C}_\eta$$

Pick a central character $\chi : Z(\mathfrak{g}) \to \mathbb{C}$ and let I^{χ} be the ideal of $Z(\mathfrak{g})$ generated by elements $z - \chi(z)$. Kostant proved that the Whittaker module

$$W^{\chi}_{\eta} = W_{\eta} / I^{\chi} W_{\eta}$$

is simple and has central character χ .

Part II

Polynomial modules

Let $\mathfrak{a}\subset\mathfrak{g}$ be an abelian subalgebra.

Idea: study the category of \mathfrak{g} -modules where \mathfrak{a} acts *freely* instead of locally finitely.

 $U(\mathfrak{a})$ is a free $U(\mathfrak{a})$ -module of rank 1, and if x_1, \ldots, x_n is a basis for \mathfrak{a} , $U(\mathfrak{a}) \simeq K[x_1, \ldots, x_n]$.

Let $\mathfrak{a}\subset\mathfrak{g}$ be an abelian subalgebra.

Idea: study the category of \mathfrak{g} -modules where \mathfrak{a} acts *freely* instead of locally finitely.

 $U(\mathfrak{a})$ is a free $U(\mathfrak{a})$ -module of rank 1, and if x_1, \ldots, x_n is a basis for \mathfrak{a} , $U(\mathfrak{a}) \simeq K[x_1, \ldots, x_n]$. We define a corresponding category of \mathfrak{a} -free modules:

 $\mathcal{M}^{\mathfrak{g}}_{\mathfrak{a}} = \{ V \in U(\mathfrak{g}) ext{-}\mathsf{Mod} \mid \operatorname{Res}^{U(\mathfrak{g})}_{U(\mathfrak{a})} V ext{ is free} \}$

The simple objects of rank 1 in $\mathcal{M}_{\mathfrak{h}}^{\mathfrak{g}}$ were classified 2015-2016. Notably, $\mathcal{M}_{\mathfrak{h}}^{\mathfrak{g}}$ is empty when \mathfrak{g} is not of type A or C. The simple objects of rank 1 in $\mathcal{M}_{\mathfrak{h}}^{\mathfrak{g}}$ were classified 2015-2016. Notably, $\mathcal{M}_{\mathfrak{h}}^{\mathfrak{g}}$ is empty when \mathfrak{g} is not of type A or C.

Example

We take $\mathfrak{a} = \mathfrak{h}$ the standard Cartan subalgebra for \mathfrak{sl}_2 . For each $c \in \mathbb{C}$, let $M_c = \mathbb{C}[h]$ as a vector space and define

$$\begin{array}{rcl} h \cdot f(h) &=& hf(h), \\ x \cdot f(h) &=& f(h-2), \\ y \cdot f(h) &=& -\frac{1}{8}(h+c+2)(h-c)f(h+2). \end{array}$$

Then $M_c \in \mathcal{M}$. In Block's classification, this module belong to the Whittaker-class.

Various authors found corresponding classifications of $U(\mathfrak{h})$ -free modules for

- Virasoro algebras
- Conformal algebras
- The Witt algebra
- Algebras of differential operators
- Heisenberg-Virasoro algebras
- Quantum algebras
- Super Lie algebras
- Kac-Moody algebras

Now take \mathfrak{a} as the nilradical of a maximal parabolic subalgebra of \mathfrak{sl}_n .

Now take \mathfrak{a} as the nilradical of a maximal parabolic subalgebra of \mathfrak{sl}_n .

$$\mathfrak{a} = \operatorname{span} \{ e_{i,n} \mid 1 \leq i < n \}$$
 $\mathfrak{sl}_n =$

Now take \mathfrak{a} as the nilradical of a maximal parabolic subalgebra of \mathfrak{sl}_n .

$$\mathfrak{a} = \operatorname{span} \{ e_{i,n} \mid 1 \leq i < n \}$$
 $\mathfrak{sl}_n =$

The simple objects of rank 1 in $\mathcal{M}_{\mathfrak{a}}^{\mathfrak{sl}_n}$ were classified in 2023.

Result

Simple objects of $\mathcal{M}_{\mathfrak{a}}^{\mathfrak{sl}_n}$ are parametrized by polynomials in n-1 variables.

We take $\mathfrak{a} = \operatorname{span}(x)$. Then $U(\mathfrak{a}) \simeq k[x]$ as an \mathfrak{a} -module. Pick a polynomial $p \in k[x]$ and let $q := -\frac{1}{2x} \int_0^x p(t)p'(t) + tp''(t)dt$. Define a corresponding \mathfrak{sl}_2 action on V(p) = k[x] as follows:

$$\begin{array}{lll} x \cdot f(x) &=& xf(x), \\ h \cdot f(x) &=& p(x)f(x) + 2xf'(x), \\ y \cdot f(x) &=& q(x)f(x) - p(x)f'(x) - xf''(x). \end{array}$$

We take $\mathfrak{a} = \operatorname{span}(x)$. Then $U(\mathfrak{a}) \simeq k[x]$ as an \mathfrak{a} -module. Pick a polynomial $p \in k[x]$ and let $q := -\frac{1}{2x} \int_0^x p(t)p'(t) + tp''(t)dt$. Define a corresponding \mathfrak{sl}_2 action on V(p) = k[x] as follows:

$$\begin{array}{lll} x \cdot f(x) &=& xf(x), \\ h \cdot f(x) &=& p(x)f(x) + 2xf'(x), \\ y \cdot f(x) &=& q(x)f(x) - p(x)f'(x) - xf''(x). \end{array}$$

Then $V(p) = \mathcal{M}_{\mathfrak{a}}^{\mathfrak{sl}_2}$. Moreover, any rank 1 module of $\mathcal{M}_{\mathfrak{a}}^{\mathfrak{sl}_2}$ is isomorphic to some V(p).

We take $\mathfrak{a} = \operatorname{span}(x)$. Then $U(\mathfrak{a}) \simeq k[x]$ as an \mathfrak{a} -module. Pick a polynomial $p \in k[x]$ and let $q := -\frac{1}{2x} \int_0^x p(t)p'(t) + tp''(t)dt$. Define a corresponding \mathfrak{sl}_2 action on V(p) = k[x] as follows:

$$\begin{array}{lll} x \cdot f(x) &=& xf(x), \\ h \cdot f(x) &=& p(x)f(x) + 2xf'(x), \\ y \cdot f(x) &=& q(x)f(x) - p(x)f'(x) - xf''(x). \end{array}$$

Then $V(p) = \mathcal{M}_{\mathfrak{a}}^{\mathfrak{sl}_2}$. Moreover, any rank 1 module of $\mathcal{M}_{\mathfrak{a}}^{\mathfrak{sl}_2}$ is isomorphic to some V(p). These modules constitute a large family of modules of third Block-type.

- For which pairs $(\mathfrak{a},\mathfrak{g})$ is the category $\mathcal{M}^{\mathfrak{g}}_{\mathfrak{a}}$ nonempty?
- \bullet Does there exist simple objects in $\mathcal{M}^{\mathfrak{g}}_{\mathfrak{a}}$ of rank higher than one?
- Is there a correspondence between modules where \mathfrak{a} acts freely and modules where \mathfrak{a} acts locally nilpotently?
- Clebsch-Gordan problem: what can be said about the decomposition of $M \otimes E$ where $M \in \mathcal{M}^{\mathfrak{g}}_{\mathfrak{a}}$ and E is finite dimensional?
- What can be said about the category of modules which are finitely generated over $U(\mathfrak{a})$?

- R. Block; The irreducible representations of the Lie algebra $\mathfrak{sl}(2)$ and of the Weyl algebra. Advances in Mathematics **139** (1981), no. 1, 69–110.
- J. Nilsson; Simple sl_{n+1}-module structures on U(h). Journal of Algebra 424 (2015), 294–329.
- J. Nilsson; U(h)-free modules and coherent families.
 Journal of Pure and Applied Algebra 220 (2016), 1475–1488.
- J. Nilsson; Simple sl(V)-modules which are free over an abelian subalgebra. Accepted for publication in Forum Mathematicum (2023).