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Introduction

Over the last decade, I’ve been trying to better understand
Riemannian aspects of noncommutative geometry.

In particular, the existence and uniqueness of a torsion free and
metric, i.e. “Levi-Civita”, connection.

There are several different contexts in which one may ask these
questions.

I’ve mostly worked in a “derviation-based” approach to
noncommutative geometry.

In this setting, it is still not clear when a Levi-Civita connection exists.

Although, we’ve developed quite some theory over the years, I would
like to present a case study which shows that even in a very simple
case, there are several aspects that come into play.
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Noncommutative geometry in a nutshell

The complex valued smooth functions C∞(M) on a manifold M is a
C-algebra.

We think of this as a dual description of the manifold.

This duality can be made precise in certain settings. For instance,
commutative C ∗-algebras correspond to continuous functions on
locally compact Hausdorff topological spaces.

Geometry can be formulated algebraically via the algebra of functions.

Noncommutative geometry drops the assumption of
noncommutativity of the algebra, and tries to make sense of geometry.

There is usually no “space” anymore, only an algebra.

One tries to formulate geometric objects in an algebraic way, so that
it allows for a generalization to noncommutative algebras.
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Sections of vector bundles

Given a vector bundle E , a smooth choice of a vector for each point is
called a section of the vector bundle.

Given two sections X ,Y : M → E one can add them, and multiply by
functions

(X + Y )(p) = X (p) + Y (p)

(fX )(p) = f (p)X (p)

for f ∈ C∞(M) and p ∈ M.

That is, the space of sections of a vector bundle is a module over the
algebra of functions C∞(M).
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Vector bundles and projective modules

Because of the following theorem by Serre and Swan (here in the form of
Swan) one has a good algebraic notion of a vector bundle.

Theorem (R. G. Swan)

Let X be a compact Hausdorff space, and let C (X ) be the ring of
continuous functions from X to R. A C (X )-module P is isomorphic to a
module of sections of a vector bundle if and only if it is a finitely
generated projective module.

Hence, one simply defines a vector bundle over an arbitrary
(noncommutative) algebra A as a finitely generated projective A-module.

Vector bundle ↔ Finitely generated projective module
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Differential calculus

If one wants data corresponding to a differentiable manifold one
should, apart from choosing an algebra A, provide some kind of
“differentiable structure”.

In the spirit of Alain Connes (Fields medallist and the “father” of
noncommutative geometry) one chooses a representation of the
algebra on a Hilbert space together with a “Dirac operator” acting on
the space. (This also gives metric information.)

Another way of doing this is to choose a differential graded algebra Ω
such that Ω0 = A.

Yet another way is to choose a distinguished set of derivations on the
algebra, defining the calculus.

In noncommutative geometry, we have to live with the fact that there
are many possible choices of differential calculus over an algebra.
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Derivation based differential calculus

In this approach (pioneered by Michel Dubois-Violette), one starts by
choosing an algebra A together with a Lie algebra g ⊆ Der(A).

Is g = Der(A) a canonical choice? Not always, a noncommutative
algebra has plenty of inner derivations ∂(a) = [a,D] for some D ∈ A.

For several reasons, one is usually more interested in outer derivations.

Now, let us start with the pair (A, g) and build a differential graded
algebra.

The algebra A correspond to the “functions” and the Lie algebra g
correspond to the “vector fields”. The differential graded algebra will
correspond to the “differential forms”.
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Given g ⊆ Der(A), one defines Ω̄k
g to be the set of Z (A)-multilinear

alternating maps (Z (A) =center of A)

ω : g× · · · × g︸ ︷︷ ︸
k

→ A,

and one gives Ω̄k
g the structure of a A-bimodule by setting

(aω)(∂1, . . . , ∂k) = aω(∂1, . . . , ∂k)

(ωa)(∂1, . . . , ∂k) = ω(∂1, . . . , ∂k)a

for a ∈ A, ω ∈ Ω̄k
g and ∂1, . . . , ∂k ∈ g.

Furthermore, for ω ∈ Ω̄k
g and τ ∈ Ω̄l

g one defines ωτ ∈ Ω̄k+l
g as

(ωτ)(∂1, . . . , ∂k+l)

=
1

k!l!

∑
σ∈Sk+l

sgn(σ)ω(∂σ(1), . . . , ∂σ(k))τ(∂σ(k+1), . . . , ∂σ(k+l)),

where SN denotes the symmetric group on N letters.
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For a ∈ A one defines d0 : A = Ω̄0
g → Ω̄1

g as

(d0a)(∂) = ∂a

and for ω ∈ Ω̄k
g (for k ≥ 1) one defines dk : Ω̄k

g → Ω̄k+1
g by

dkω(∂0, . . . , ∂k) =
k∑

i=0

(−1)i∂i
(
ω(∂0, . . . , ∂̂i , . . . , ∂k)

)
+

∑
0≤i<j≤k

(−1)i+jω
(
[∂i , ∂j ], ∂0, . . . , ∂̂i , . . . , ∂̂j , . . . , ∂k

)
,

satisfying dk+1dk = 0, where ∂̂i denotes the omission of ∂i in the
argument. When there is no risk for confusion, we shall omit the index k
and simply write d : Ω̄k

g → Ω̄k+1
g .

Since d2 = 0 there is a natural cohomology theory

Hk(Ωg) = ker(dk)/ im(dk−1)
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Connections and curvature

Let g be a Lie subalgebra of Der(A).

Definition

Let M be a left A-module. A left connection on M is a map
∇ : g×M → M such that

∇∂

(
m +m′) = ∇∂m +∇∂m

′

∇∂+∂′m = ∇∂m +∇∂′m

∇z·∂m = z∇∂m

∇∂(am) = a∇∂m + (∂a)m

for m,m′ ∈ M, ∂, ∂′ ∈ g, a ∈ A and z ∈ Z (A).

The curvature of ∇ is the map R : g× g×M → M defined as

R(∂, ∂′)m = ∇∂∇∂′m −∇∂′∇∂m −∇[∂,∂′]m.
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Hermitian forms on modules

The analogue of a metric on a vector bundle is a hermitian form.
Compare with

h(X ,Y ) = g(X , Ȳ )

on the complexified tangent bundle.

Definition

Let M be a left A-module. A map h : M ×M → A is called a hermitian
form on M if

h(m1 +m2,m3) = h(m1,m3) + h(m2,m3)

h(am1,m2) = ah(m1,m2)

h(m1,m2)
∗ = h(m2,m1).
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Metric connections

In Riemannian geometry, a connection is compatible with the metric if

X
(
g(m1,m2)

)
= g(∇Xm1,m2) + g(m1,∇Xm2)

for m1,m2 ∈ M and X a vector field.

Similarly, one defines a connection
on a left A-module to be compatible with a hermitian form h if

∂h(m1,m2) = h
(
∇∂m1,m2

)
+ h

(
m1,∇∂∗m2

)
where ∂∗(a) =

(
∂(a∗)

)∗
.
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Levi-Civita connections on Ω1
g

Definition

The torsion of a left connection ∇ on Ω1
g is given by the map

T : Ω1
g × g× g → A, defined by

Tω(∂, ∂
′) = (∇∂ω)(∂

′)− (∇∂′ω)(∂)− dω(∂, ∂′). (1)

The connection is called torsion free if Tω(∂, ∂
′) = 0 for all ∂, ∂′ ∈ g and

ω ∈ Ω1
g.

Definition

Let h be a left hermitian form on Ω̄g. A left Levi-Civita connection ∇ on
Ω̄g with respect to h is a torsion free left connection on Ω̄g compatible
with h.
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The Kronecker algebra
As an example, we would like to study the path algebra originating from
the Kroncker quiver.

Let KN denote the unital C-algebra generated by e, α1, . . . , αN satisfying

e2 = e eαk = αk αke = 0 αjαk = 0 (2)

for j , k ∈ {1, . . . ,N}. The algebra KN is finite dimensional, and every
element a ∈ KN can be uniquely written as

a = λ1+ µe + aiαi

for λ, µ, ai ∈ C.
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Derivations

Proposition

A basis of Der(KN) is given by {∂k}Nk=1 and {∂ l
k}Nk,l=1 with

∂k(e) = iαk ∂k(αl) = 0

∂ l
k(e) = 0 ∂l

k(αj) = δljαk ,

satisfying

[∂j
i , ∂

l
k ] = δjk∂

l
i − δli∂

j
k

[∂j
i , ∂k ] = δjk∂i

[∂i , ∂j ] = 0.

Moreover, ∂i , ∂
j
i are hermitian derivations for i , j = 1, . . . ,N.
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The bimodule of 1-forms Ω1
g is generated by de, dα1, . . . , dαN . However,

depending on the choice of g, they might not constitute a basis of Ω1
g. To

simplify the notation, we set dα0 = de.

Proposition

For any g ⊆ Der(KN) the bimodule structure of Ω1
g is given by

edαI = dαI αidαI = 0

(dαI )e = 0 (dαI )αi = 0,

for i = 1, . . . ,N and I = 0, 1, . . . ,N.

Proposition

If g ⊆ Der(KN) then Ωk
g = 0 for k ≥ 2.

Proposition

If g ⊆ Der(KN) then H1(Ωg) = 0.
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Proposition

Let ∇ be a C-bilinear map

∇ : g× Ω1
g → Ω1

g.

Then ∇ is a bimodule connection on Ω1
g.

Note that, due to the specific bimodule structure on Ω1
g, there exists a

trivial connection. That is, there exists a connection ∇ such that

∇∂ω = 0

for all ω ∈ Ω1
g and ∂ ∈ g.
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All derivations

Let g = Der(A). In this case, dα0 = de, dα1, . . . , dαN is a vector space
basis of g.

Proposition

If ∇ is a torsion free connection on Ω1
Der then ∇∂ω = 0 for all

∂ ∈ Der(KN) and ω ∈ Ω1
Der.

For a torsion free connection to be compatible with a hermitian form, one
needs ∂h(dαI , dαJ) = 0 for I , J = 0, . . . ,N and ∂ ∈ Der(A) implying that

h(dαI , dαJ) = λIJ1

for λIJ ∈ C.
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Outer derivations

Let

g = C
〈
∂̃i = ∂i + ∂ i

i : i = 1, . . . ,N
〉
.

Each ∂̃i is an outer derivation and it follows that dα1, . . . , dαN is a vector
space basis for Ω1

g and dα1 + · · ·+ dαN = −ide.

Proposition

A connection ∇ : g× Ω1
g → Ω1

g is torsion free if and only if there exists
γij ∈ C such that

∇∂̃i
dαj = γijdαi (3)

for i , j = 1, . . . ,N.
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Now, let us construct a torsion free connection on Ω1
g that is compatible

with the hermitian form given by

hij = h(dαi , dαj) = δijλiαi

for λi ∈ R.

Setting

∇∂̃i
dαj =

1
2δijdαi (4)

it follows from the previous proposition that ∇ is torsion free. Moreover,
one checks that ∇ is compatible with h:

∂̃ihjk − h(∇∂̃i
dαj , dαk)− h(dαj ,∇∂̃i

dαk)

= δjkλj ∂̃idαj − 1
2δijhik −

1
2δikhji

= λjδjkδijαi − 1
2δijδikλiαi − 1

2δikδjiλjαj = 0.
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Inner derivations

The Lie algebra of inner derivations is given by

g = C
〈
∂1, . . . , ∂N , ∂̂ = ∂1

1 + · · ·+ ∂N
N

〉
and it follows that dα0 = de, dα1, . . . , dαN is a basis for g.

Proposition

∇ is a torsion free connection on Ω1
g if and only if there exists γJI ∈ C, for

I , J = 0, . . . ,N such that

∇∂kdαI = iγ0I dαk (5)

∇∂̂dαI = γJI dαJ (6)

for k = 1, . . . ,N and I = 0, . . . ,N.
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Let us now show that there are indeed torsion free connections on Ω1
g

compatible with hermitian forms of the type

h(dαI , dαJ) = γ0I γ
0
Jh0

for arbitrary h0 ∈ C ⟨α1, . . . , αN⟩ and γ0I ∈ R. A torsion free connection
compatible with h is then given by

∇∂kdαI = iγ0I dαk

∇∂̂dαI = γ0I de +
γ0I
γ0i0

(
1
2 − γ00

)
dαi0

for arbitrary 1 ≤ i0 ≤ N such that γ0i0 ̸= 0.

Thank you for your attention!
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