A new approach to noncommutative Riemannian spin geometry

- I The classical picture
- · Let M be a compact oriented Riemannian Manifold of elin n
- . Let TM be the tangent bundle
- · there is a canonical ptincipal GL(n)-bundle associater TM , the so-called Frame bundle over M
- · Orientability + Rien, matric => Fr(M) con be reduced to a LO(N)-bundle
- · Fr(M) × soch R" = TM
- · spin(n): = universal covering of socn)
 - $1 \rightarrow \mathbb{Z}_2 \rightarrow Spin(n) \rightarrow SO(n) \rightarrow 1$

Def A spin structure on M is
a principal spin(n) - bundle P
over M together with a 2-fold
covering
$$\varphi \cdot P \rightarrow Fr(M)$$
 St.

- · let IT: spinln) -> G((Dn) be the so-called spin-repr. on the space Dn of n-spinors
- · S := P × an , the so-called spinor bundle over M
- S is hermitian, equipped with an inner product $\langle \cdot, \cdot \rangle$ $\mathcal{A}_{S} := \Gamma(S)$

smooth-sections

- · C°(M) admits a faithful * repr. On Hs by point size Multiplication
- There is an unbounded s.a. operator D on Hs with compact resolvent and bounded commutators [D,f], fe(20(M))
- . (C^{as}(M), Hs, D) is called a spectral triple Dirac operator
 - II) The NC picture
 - · Let B be a unital C*-alsebrg
 - · By a spectral triple on B we mean a PB:= (Bo, H, D) st.

- 1) Bo is a dense unital z-rub. als of B
- 2) Il is a Hillert space carrying a faithful x-repr. of B
- 3) D is an unbounded s.a. operator with compact resolvent and bounded commutators [D,6], be Bo

THM (Conner OP)
(Bo, H, D) commutative spectral tiple
+ extra condition) =>
(Bo, H, D)
$$\cong$$
 (C^{oo}(W), H_S, D)
(Bo, H, D) \cong (C^{oo}(W), H_S, D)
 $\mathcal{M}(P_B) = \{ \times [D_1 y] : x_1 y \in B_0 \}$
 $\subseteq B(\mathcal{H})$
Connes! differential 1-form

Is there systematic construction of a

$$NCPB$$
 [A, SO(n), d) with $A^{SO(n)} = B$
such that $\Omega^{2}(D_{A}) \equiv \Omega^{2}(ID_{B})$

Q2) (Joing)

When is there a 2-fold covering (C, spin(n), x) of (A, solving) s.t. a suitable induction recovers H in the spectral triple.