Homogeneity in commutative graded rings

Johan Öinert

BTH

The 4th SNAG meeting, Online (Zoom), December 2021

Johan Öinert (BTH)

Homogeneity in graded rings

Explanation of the title: Graded rings and homogeneity

Definition (Graded ring)

Let G be a group and R a ring. We say that R is a G-graded ring if there is a collection of additive subgroups $\{R_g\}_{g\in G}$ satisfying

$${f 0}~~R=\oplus_{g\in G}R_g$$
, and

②
$$R_g R_h \subseteq R_{gh}$$
, for all $g,h \in G$.

Definition (Homogeneity)

• An element $r \in R$ is called *homogeneous* if $r \in R_g$ for some $g \in G$.

• An ideal I of R is called graded (or homogeneous) if $I = \bigoplus_{g \in G} (I \cap R_g).$

Acknowledgement and a warning!

This talk is based on joint work with Abolfazl Tarizadeh (University of Maragheh). arXiv:2108.10235 [math.AC]

Warning

In this talk ring means commutative ring!

Outline

- Classical results for polynomial rings
- 2 Generalizations of McCoy's theorem
- Generalizations of Armendariz' theorem
 - The Jacobson radical
- 5 Idempotents
- 6 A characterization of totally ordered abelian groups

Generalizations of McCoy's theorem

3 Generalizations of Armendariz' theorem

4) The Jacobson radical

5 Idempotents

McCoy's theorem

Theorem (McCoy)

If f is a zero-divisor element of the polynomial ring R[x], then cf = 0 for some nonzero $c \in R$.

The following well-known conclusion can also easily be proved directly.

Corollary

If R is an integral domain, then R[x] is an integral domain.

Theorem (McCoy)

If f is a zero-divisor element of the polynomial ring $R[x_1, \ldots, x_d]$, then cf = 0 for some nonzero $c \in R$.

Armendariz' theorem

Theorem (Armendariz)

Let f, g be elements of the polynomial ring R[x]. Then fg is nilpotent if and only if the product of any coefficient of f with any coefficient of g is nilpotent.

The starting point

Remark

R[x] is naturally \mathbb{Z} -graded: $R[X] = \oplus_{n \in \mathbb{Z}} S_n$ where

- $S_n := Rx^n$ for $n \ge 0$, and
- $S_n := \{0\}$ for n < 0.

Remark

$$\begin{split} S &:= R[x_1, \dots, x_d] \text{ is naturally } \mathbb{Z}^d \text{-graded:} \\ \text{Indeed, } S &= \oplus_{(n_1, \dots, n_d) \in \mathbb{Z}^d} S_{(n_1, \dots, n_d)} \text{ where} \\ &\bullet S_{(n_1, \dots, n_d)} := R x_1^{n_1} x_2^{n_2} \dots x_d^{n_d} \text{ for } (n_1, \dots, n_d) \geq 0, \\ &\bullet S_{(n_1, \dots, n_d)} := \{0\} \text{ whenever } n_i < 0 \text{ for some } i. \end{split}$$

Question

Can McCoy's and Armendariz' theorems be generalized to the setting of G-graded rings?

Johan Öinert (BTH)

Homogeneity in graded rings

An observation

Example

Let G be a group containing an element $g\neq e$ such that $g^n=e$ for some $n\in\mathbb{Z}^+.$ Then

$$(g-e)(g^{n-1}+g^{n-2}+\ldots+g^1+g^0)=0$$

in any group ring R[G]. This means that g - e is a zero-divisor in R[G]. But there is no nonzero element $c \in R$ such that $c \cdot (g - e) = 0$.

Conclusion

If we want to generalize McCoy's theorem to G-graded rings, then we need to restrict ourselves to groups which are **torsion-free**!

Totally ordered abelian groups

Definition

An abelian group G is said to be *totally ordered* or *linearly ordered* if it is equipped with a total ordering \leq such that if $a \leq b$ for some $a, b \in G$, then $a + c \leq b + c$ for all $c \in G$.

Example

•
$$G = (\mathbb{Z}, +)$$

•
$$G = (\mathbb{R}, +)$$

- $G = (\mathbb{Z}^d, +)$, with the lexicographical ordering
- $G = (\mathbb{R}^d, +)$, with the lexicographical ordering

Remark

From now on G will denote an arbitrary totally ordered abelian group!

Johan Öinert (BTH)

Homogeneity in graded rings

2 Generalizations of McCoy's theorem

3 Generalizations of Armendariz' theorem

4 The Jacobson radical

5 Idempotents

Annihilators

Theorem (Tarizadeh & Öinert)

Let I be an ideal of a G-graded ring R. If $Ann_R(I) \neq 0$, then there exists a nonzero homogeneous $g \in R$ such that gI = 0.

Corollary

If f is a zero-divisor element of a G-graded ring R, then there exists a nonzero homogeneous $g \in R$ such that fg = 0.

Corollary (McCoy's theorem)

If f is a zero-divisor element of the polynomial ring $R[x_1, \ldots, x_d]$, then cf = 0 for some nonzero $c \in R$.

Generalizations of McCoy's theorem

Generalizations of Armendariz' theorem

4 The Jacobson radical

5 Idempotents

The Jacobson radical and the nilradical

Definition

• The Jacobson radical of R:

$$\mathfrak{J}(R):=\bigcap_{\mathfrak{m}\in\mathrm{Max}(R)}\mathfrak{m}$$

• The *nilradical of R*:

$$\mathfrak{N}(R) := \bigcap_{\mathfrak{m} \in \operatorname{Prime}(R)} \mathfrak{m}$$

More concretely, $\mathfrak{N}(R) := \{r \in R \mid r^m = 0 \text{ for some } m \in \mathbb{Z}^+\}.$

Remark

$$\mathfrak{N}(R)$$
 is a graded ideal of R , and $\mathfrak{N}(R) \subseteq \mathfrak{J}(R)$.

Johan Öinert (BTH)

Homogeneity in graded rings

Radical ideals

Definition

An ideal I of a ring R is called a *radical ideal* if $I = \sqrt{I}$, i.e. $I = \{r \in R \mid r^n \in I \text{ for some } n \in \mathbb{Z}^+\}.$

Remark

 $\mathfrak{N}(R)$ and $\mathfrak{J}(R)$ are radical ideals of R.

Ideal quotients and graded ideals

Remark

Let I and J be ideals of a ring R. The *ideal quotient*, $I:_R J = \{f \in R : fJ \subseteq I\}$ is an ideal of R containing I.

Remark

If I and J are graded ideals of R, then $I :_R J$ is a graded ideal of R.

Theorem (Tarizadeh & Öinert)

Let I be a graded radical ideal of a G-graded ring R and J an arbitrary ideal of R. Then $I :_R J$ is a graded ideal.

Corollary

If I is an ideal of a G-graded ring R, then $\mathfrak{N}(R) :_R I$ is a graded ideal.

Nilpotent elements

Corollary

Let $f = \sum_{i \in G} f_i$ and $g = \sum_{k \in G} g_k$ be elements of a *G*-graded ring *R*. Then fg is nilpotent if and only if f_ig_k is nilpotent for all $i, k \in G$.

Corollary (Armendariz' theorem in several variables)

Let R be a ring and let f, g be elements of the polynomial ring $R[x_1, \ldots, x_d]$. Then fg is nilpotent if and only if the product of any coefficient of f with any coefficient of g is nilpotent.

Generalizations of McCoy's theorem

3 Generalizations of Armendariz' theorem

The Jacobson radical

5 Idempotents

Graded ideals

Theorem (Bergman, Tarizadeh & Öinert)

The Jacobson radical of a G-graded ring is a graded ideal.

Recall that $\mathfrak{J}(R)$ is a radical ideal!

Corollary

If I is an ideal of a G-graded ring R, then $\mathfrak{J}(R) :_R I$ is a graded ideal.

Corollary

Let $f = \sum_{i \in G} f_i$ and $g = \sum_{k \in G} g_k$ be elements of a *G*-graded ring *R*. Then $fg \in \mathfrak{J}(R)$ if and only if $f_ig_k \in \mathfrak{J}(R)$ for all $i, k \in G$.

Generalizations of McCoy's theorem

3 Generalizations of Armendariz' theorem

4) The Jacobson radical

5 Idempotents

Idempotents

Theorem (Tarizadeh, Öinert)

Every idempotent element of a G-graded ring R is contained in R_0 .

Corollary

If R is a G-graded ring such that R_0 has no non-trivial idempotent, then R has no non-trivial idempotent.

Generalizations of McCoy's theorem

3 Generalizations of Armendariz' theorem

4) The Jacobson radical

5 Idempotents

Totally ordered abelian groups

Theorem (Tarizadeh & Öinert, Levi)

For an abelian group H the following assertions are equivalent:

- It is a totally ordered group.
- It is torsion-free.
- The Jacobson radical of every H-graded ring is a graded ideal.
- Solution \mathbb{C} Every idempotent of every H-graded ring R is contained in R_0 .

The end

THANK YOU FOR YOUR ATTENTION!

Johan Öinert (BTH)

Homogeneity in graded rings