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Introduction

In many areas of applications there may be found relations of the
form

AB = BF (A) (1)

for a certain function F satisfying certain conditions where A,B
are elements of an associative algebra over a field (for example,
field of complex numbers).
This relation appears in Quantum Mechanics, Wavelet Analysis,
and have some connection with Dynamical Systems and for
specific spaces it is related to Spectral Theory.
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Introduction cont.

A pair (A,B) of the corresponding associative algebra that satisfies
(1) called a representation of this relation. One of the main
objectives is to find representations of relation and study their
properties. We construct representations of Relation (1) by linear
integral and multiplication operators on Lp spaces.
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Construction of representations

Proposition

Let A : Lp(R) → Lp(R), B : Lp(R) → Lp(R), 1 < p < ∞, be
defined as follows

(Ax)(t) =

β∫
α

k(t, s)x(s)ds, (Bx)(t) = b(t)x(t),

almost everywhere, where k(t, s) : R× [α, β] → R, α, β ∈ R, is a
measurable function, satisfying

∫
R

 β∫
α

|k(t, s)|qds

p/q

dt < ∞, (2)

1 < q < ∞ such that
1

p
+

1

q
= 1 and b ∈ L∞(R).
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Construction of representations

Consider a real valued polynomial
F (t) = δ0 + δ1t + δ2t

2 + . . .+ δnt
n, where δ0, δ1, . . . , δn are real

constants. We set

k0(t, s) = k(t, s), km(t, s) =

β∫
α

k(t, τ)km−1(τ, s)dτ, m = 1, n

Fn(k(t, s)) =
n∑

j=1

δjkj−1(t, s), n ∈ N. (3)
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Construction of representations

Then, AB = BF (A) if and only if for all x ∈ Lp(R)

b(t)δ0x(t) + b(t)

β∫
α

Fn(k(t, s))x(s)ds =

β∫
α

k(t, s)b(s)x(s)ds.

(4)

If δ0 = 0, that is, F (t) = δ1t + δ2t
2 + . . .+ δnt

n then the condition
(4) reduces to the following: for almost every (t, s) in R× [α, β]

b(t)Fn(k(t, s)) = k(t, s)b(s). (5)
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Construction of representations

Corollary

Let A : Lp(R) → Lp(R), B : Lp(R) → Lp(R), 1 < p < ∞, be
defined as follows

(Ax)(t) =

β∫
α

k(t, s)x(s)ds, (Bx)(t) = b(t)x(t),

almost everywhere, where k(t, s) : R× [α, β] → R, α, β ∈ R, is a
measurable function satisfying (2), b ∈ L∞(R) nonzero such that
the set

supp b ∩ [α, β]

has measure zero. Consider a real valued polynomial
F (t) = δ0 + δ1t + δ2t

2 + . . .+ δnt
n, where δ0, . . . , δn are real

constants.
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Construction of representations

We set

k0(t, s) = k(t, s), km(t, s) =

β∫
α

k(t, τ)km−1(τ, s)dτ, m = 1, n

Fn(k(t, s)) =
n∑

j=1

δjkj−1(t, s), n ∈ N.

Then, we have AB = BF (A) if and only if δ0 = 0 and the set

(supp b × [α, β]) ∩ supp gFk

has measure zero in R× [α, β], where gFk : R× [α, β] → R
defined by gFk(t, s) = Fn(k(t, s)).
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Construction of representations

Corollary

Let A, B : Lp([−M,M]) → Lp([−M,M]) be nonzero operators
defined as follows

(Ax)(t) =

β∫
α

k(t, s)x(s)ds, (Bx)(t) = b(t)x(t),

almost everywhere, where α, β ∈ R, M = max{|α|, |β|},
k(t, s) : [−M,M]× [α, β] → R, b : [−M,M] → R are given by

k(t, s) = a0 + a1t + c1s, b(t) = b0 + b1t + b2t
2,

a0, a1, b0, b1, b2, c1 are real numbers. Consider a polynomial
F : R → R defined by F (t) = δ1t + δ2t

2, where δ1, δ2 are real
numbers.

D. Djinja, S. Silvestrov & A. Tumwesegye Multiplication and linear integral operators on Lp spaces representing polynomial covariant type commutation relations



Multiplication and linear integral operators on Lp spaces representing polynomial covariant type commutation relations

Construction of representations

Then, we have AB = BF (A) if and only if for almost every (t, s) in
R× [α, β]

b(t)F2(k(t, s)) = k(t, s)b(s)

which it is equivalent to b(s) ≡ b0 non-zero constant. In
particular, one of the following cases holds:

1 If a1 = c1 = 0 and δ2 ̸= 0, then

a0 =
1− δ1

δ2(β − α)
.

Otherwise if δ2 = 0 then δ1 = 1 and a0 is free.
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2 if a1 = 0 and δ2 ̸= 0 then

a0 =
2− 2δ1 − δ2c1(β

2 − α2)

2δ2(β − α)
,

c1 is free. If a0 = 0, β ̸= −α then

c1 =
2− 2δ1

δ2(β2 − α2)
.

Otherwise if δ2 = 0 or β = −α then a0, c1 are free and δ1 = 1.
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3 c1 = 0 and δ2 ̸= 0 then

a0 =
2− 2δ1 − δ2a1(β

2 − α2)

2δ2(β − α)
,

a1 is free. If a0 = 0, β ̸= −α then

a1 =
2− 2δ1

δ2(β2 − α2)
.

Otherwise if δ2 = 0 or β = −α then a0, a1 are free and δ1 = 1.
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Construction of representations

Corollary

Let A : Lp(R) → Lp(R), B : Lp(R) → Lp(R), 1 < p < ∞, be
defined as follows

(Ax)(t) =

β∫
α

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t),

almost everywhere, where a ∈ Lp(R), c ∈ Lq([α, β]) (α, β ∈ R),

1 < q < ∞ such that
1

p
+

1

q
= 1 and b ∈ L∞(R). Consider a

polynomial F : R → R defined by F (t) = δ1t + δ2t
2 + . . .+ δnt

n,
where δ1, . . . , δn are real constants. We set

µ =

β∫
α

a(s)c(s)ds.
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Construction of representations

Then, we have AB = BF (A) if and only if the set

supp gac ∩ supp gb,

has measure zero in R× [α, β], where gac , gb : R× [α, β] → R are
defined as follows

gac(t, s) = a(t)c(s)

gb(t, s) = b(t)
n∑

j=1

δjµ
j−1 − b(s).
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Construction of representations

Let A : Lp(R) → Lp(R), B : Lp(R) → Lp(R), 1 < p < ∞ be
defined as follows

(Ax)(t) =

2∫
0

a(t)c(s)x(s)ds, (Bx)(t) = b(t)x(t),

almost everywhere, where a(t) = I[0,1](t)(1 + t2), c(s) = 1,
b(t) = I[1,2](t)t

2. Consider a polynomial F : R → R defined by
F (t) = δ1t + δ2t

2 + . . .+ δnt
n, where δ1, . . . , δn are real constants.

Then, operators A and B satisfy the relation

AB = BF (A).
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Construction of representations

Let A : Lp(R) → Lp(R), B : Lp(R) → Lp(R), 1 < p < ∞,
α, β ∈ R be defined as follows

(Ax)(t) =

β∫
α

I[α,β](t)x(s)ds, (Bx)(t) = I[α,β](t)x(t),

almost everywhere. Let F : R → R, F (t) = δ1t + δ2t
2 + . . .+ δnt

n,
where δ1, . . . , δn are constants. Then, operators A and B satisfy

AB = BF (A)

if and only if

n∑
j=1

δj(β − α)j−1 = 1.
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Construction of representations

Proposition

Let A : Lp(R) → Lp(R), B : Lp(R) → Lp(R), 1 < p < ∞ be
defined as follows

(Ax)(t) = a(t)x(t), (Bx)(t) =

β∫
α

k(t, s)x(s)ds

almost everywhere, where a ∈ L∞(R), k(t, s) : R× [α, β] → R,
α, β ∈ R, is a Lebesgue measurable function satisfying (2). For a
polynomial F : R → R defined by
F (t) = δ0 + δ1t + δ2t

2 + . . .+ δnt
n, where δ0, δ1, . . . , δn are

constants.
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Then

AB = BF (A)

if and only if the set

supp gaF ∩ supp k

has measure zero in R× [α, β], where gaF (t, s) = a(t)− F (a(s)).
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Construction of representations

Example

Let A : Lp(R) → Lp(R), B : Lp(R) → Lp(R), 1 < p < ∞ be
defined as follows

(Ax)(t) = a(t)x(t), (Bx)(t) =

β∫
α

b(t)c(s)x(s)ds

almost everywhere, where a(t) = γ0 + I[α,α+β
2 ](t)t

2, γ0 is a real

number, b(t) = (1 + t2)I[β+1,β+2](t), c(s) = I[α+β
2

,β](s)(1 + s4),

α, β ∈ R. Let F : R → R, F (t) = δ0 + δ1t, where δ0, δ1 ∈ R and
δ1 ̸= 0. If δ0 = γ0 − δ1γ0 then the above operators satisfy the
relation

AB − δ0BA = δ1B.
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