Daniel Lännström

Blekinge Institute of Technology

SNAG #4, December 2021

Based on joint work with: Johan Öinert, Stefan Wagner, Patrik Lundström

▲ D. Lännström, P. Lundström, J. Öinert, S. Wagner. *Prime group graded rings* with applications to partial crossed products and Leavitt path algebras. Preprint.

Prime Leavitt path algebras via nearly epsilon-strongly graded rings Nearly epsilon-strongly graded rings

Table of Contents

1 Nearly epsilon-strongly graded rings

- 2 Leavitt path algebras
- 3 Main result: Prime nearly epsilon-strongly graded rings
- 4 Application 1: Prime Leavitt path algebras
- 5 Application 2: Prime partial crossed products
- 6 The Graded Prime Spectrum of nearly epsilon-strongly graded rings

Group graded rings

Definition

Let G be a group and let S be a ring. A grading of S is a collection of additive subsets of S, $\{S_g\}_{g\in G}$, such that

$$S = \bigoplus_{g \in G} S_g,$$

and $S_g S_h \subseteq S_{gh}$ for all $g, h \in G$. The ring S is called a G-graded ring. S_e is called the principal component.

Graded rings: Examples I

Example

The Laurent polynomial ring is \mathbb{Z} -graded by,

$$R[x, x^{-1}] = \bigoplus_{i \in \mathbb{Z}} Rx^i.$$

Example

(The group ring) Let G be a group and let R be a unital ring. The group ring $R[G] = \bigoplus_{g \in G} R\delta_g$ is naturally G-graded.

Strongly graded rings

Definition

A G-grading $\{S_g\}$ of a ring S is called *strong* if $S_gS_h = S_{gh}$ holds for all $g, h \in G$. The ring S is called *strongly* G-graded.

Example

Let *R* be a unital ring. The Laurent polynomial ring $R[x, x^{-1}] = \bigoplus_{i \in \mathbb{Z}} Rx^i$ is strongly \mathbb{Z} -graded.

Example

Let G be a group and let R be a unital ring. The group ring R[G] is strongly G-graded.

Nearly epsilon-strongly graded rings

Definition (Nystedt, Öinert and Pinedo 2016)

Let
$$S$$
 be a G -graded ring. If, for every $g\in G$,

1
$$S_g = S_g S_{g^{-1}} S_g$$
, and,

2
$$S_g S_{g^{-1}}$$
 is a unital ideal of S_e ,

then S is called *epsilon-strongly G-graded*.

Definition (Nystedt, Öinert 2017)

Let S be a G-graded ring. If, for every $g \in G$,

1
$$S_g = S_g S_{g^{-1}} S_g$$
, and,

2 $S_g S_{g^{-1}}$ is an s-unital ideal of S_e ,

then S is called *nearly epsilon-strongly G-graded*.

Nearly epsilon-strongly graded rings

Definition

A ring S is called *s*-unital if $x \in xS \cap Sx$ for all $x \in S$.

Examples:

- 1 Leavitt path algebras (Nystedt-Öinert, 2017)
 - **1** Finite graph \implies epsilon-strongly \mathbb{Z} -graded.
 - **2** Any graph \implies nearly epsilon-strongly \mathbb{Z} -graded.
- 2 unital partial crossed products (Nystedt-Öinert-Pinedo, 2016)
- 3 algebraic Cuntz-Pimsner rings (L., 2019)

Remark

Only unital rings admit epsilon-strong gradations. Only s-unital rings admit nearly epsilon-strong gradations.

Remark

Let S be a G-graded ring. Then the following implications hold

unital strongly graded \Rightarrow epsilon strongly graded \Rightarrow nearly epsilon strongly graded

Prime Leavitt path algebras via nearly epsilon-strongly graded rings Leavitt path algebras

Table of Contents

1 Nearly epsilon-strongly graded rings

2 Leavitt path algebras

- 3 Main result: Prime nearly epsilon-strongly graded rings
- 4 Application 1: Prime Leavitt path algebras
- 5 Application 2: Prime partial crossed products
- 6 The Graded Prime Spectrum of nearly epsilon-strongly graded rings

Algebraic analogues of graph C^* -algebra and a generalization of Leavitt algebras. (G. Abrams, G. Aranda Pino, P. Ara, M. A. Moreno, E. Pardo).

Definition

Let R be a ring and E = (E⁰, E¹, s, r) be a directed graph. The Leavitt path algebra attached to E with coefficients in R is the R-algebra generated by the symbols:
1 {v | v ∈ E⁰},
2 {f | f ∈ E¹},
3 {f* | f ∈ E¹}.

Prime Leavitt path algebras via nearly epsilon-strongly graded rings $\bigsqcup_{}$ Leavitt path algebras

LPA definition (cont)

Definition

subject to the following relations:

1
$$v_i v_j = \delta_{i,j} v_i$$
 for all $v_i, v_j \in E^0$,
2 $s(f)f = fr(f) = f$ and $r(f)f^* = f^*s(f) = f^*$ for all $f \in E^1$,
3 $f^*f' = \delta_{f,f'}r(f)$ for all $f, f' \in E^1$,
4 $\sum_{f \in E^1, s(f) = v} ff^* = v$ for all $v \in E^0$ for which $s^{-1}(v)$ is non-empty and finite.

Prime Leavitt path algebras via nearly epsilon-strongly graded rings

Leavitt path algebras: Examples I

Ex: Consider the LPA associated with

Elements in $L_R(E)$: $\alpha^* = f_1^* f_2^* f_0^* \in L_R(E)$ $v_0 \in L_R(E)$ $\gamma = f_0 \in L_R(E)$

 $\alpha^* \gamma = f_1^* f_2^* f_0^* f_0 = f_1^* f_2^* r(f_0) = f_1^* f_2^*.$

Prime Leavitt path algebras via nearly epsilon-strongly graded rings $\bigsqcup_{}$ Leavitt path algebras

Examples

Example

$$\mathsf{A}_2: \qquad \bullet_{v_1} \xrightarrow{f} \bullet_{v_2}$$

In this case,
$$L_R(A_2) \cong M_2(R)$$
.

Example

$$\mathbf{A}_n: \qquad \mathbf{\bullet}_{\mathbf{v}_1} \xrightarrow{f_1} \mathbf{\bullet}_{\mathbf{v}_2} \xrightarrow{f_2} \dots \xrightarrow{f_{n-1}} \mathbf{\bullet}_{\mathbf{v}_n}$$

In this case, $L_R(A_n) \cong M_n(R)$.

Examples

Example

$$R_1$$
:

In this case, $L_R(R_1) \cong R[x, x^{-1}]$.

Example

Take $n \ge 2$. Let R_n denote the rose with n petals graph having one vertex and n loops. Then, $L_{\mathcal{K}}(R_n) \cong L_{\mathcal{K}}(1, n)$ where $L_{\mathcal{K}}(1, n)$ is the Leavitt algebra of type (1, n).

Prime Leavitt path algebras via nearly epsilon-strongly graded rings

Examples

The previous graphs have all been finite, but we also allow infinite graphs!

Example

$$E'': \bullet_{v_1} \xrightarrow{(\infty)} \bullet_{v_2}$$

The $\mathbb{Z}\text{-}\mathsf{graded}$ structure of Leavitt path algebras

Definition

The canonical \mathbb{Z} -grading of $L_R(E)$ is defined by,

 $\deg(\alpha\beta^*) = \operatorname{len}(\alpha) - \operatorname{len}(\beta).$

Hazrat and Nystedt-Öinert showed the following:

$$\begin{array}{cccc} E \text{ finite with no sinks} &\Rightarrow & E \text{ finite} &\Rightarrow & E \text{ a graph} \\ & & & & & & \\ & & & & & & \\ L_R(E) \text{ unital strong} &\Rightarrow & L_R(E) \text{ ϵ-strong} &\Rightarrow & L_R(E) \text{ nearly ϵ-strong} \end{array}$$

Prime Leavitt path algebras via nearly epsilon-strongly graded rings Main result: Prime nearly epsilon-strongly graded rings

Table of Contents

- 1 Nearly epsilon-strongly graded rings
- 2 Leavitt path algebras
- 3 Main result: Prime nearly epsilon-strongly graded rings
- 4 Application 1: Prime Leavitt path algebras
- 5 Application 2: Prime partial crossed products
- 6 The Graded Prime Spectrum of nearly epsilon-strongly graded rings

Connell's Theorem

Definition

A ring R is called prime if for all ideals A, B of R, AB = 0 implies that A = 0 or B = 0.

Theorem (Connell, 1963)

Let R be a unital ring and let G be a group. The group ring R[G] is prime if and only if R is prime and G has no non-trivial finite normal subgroups.

Passman's Theorem

Definition (Passman, 1984)

Let S be a unital strongly G-graded ring. Then G acts on the ideals of S_e by $I^x := S_{x^{-1}}IS_x$. Let H be a subgroup of G. If $I^x = I$ for every $x \in H$, then I is called H-invariant.

Theorem (Passman, 1984)

Let S be a unital strongly G-graded ring. Then S is not prime if and only if there exist:

- **1** subgroups $N \lhd H \subseteq G$ with N finite;
- **2** an *H*-invariant ideal *I* of S_e such that $I^{\times}I = \{0\}$ for every $x \in G \setminus H$, and
- **3** nonzero *H*-invariant ideals \tilde{A}, \tilde{B} of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$ and $\tilde{A}\tilde{B} = \{0\}$.

Invariant ideals

Updated definition:

Definition (L., Lundström, Wagner, Öinert, 2021, cf. Passmann)

- Let S be a G-graded ring.
 - **1** For a subset $I \subseteq S$ and $x \in G$, we consider the set $I^x := S_{x^{-1}}IS_x$.
 - **2** Let *H* be a subgroup of *G*. We say that *I* is *H*-invariant if $I^{x} \subseteq I$ for every $x \in H$.
 - 3 Let N be a normal subgroup of H. We say that I is H/N-invariant if $S_{C^{-1}}IS_C \subseteq I$ for every $C \in H/N$.

Not a group action! $(I^x)^y \neq I^{xy}$.

Our main result

Theorem (L., Lundström, Öinert, Wagner 2021)

Let S be a nearly epsilon-strongly G-graded ring. Then S is not prime if and only if there exist:

1 subgroups $N \lhd H \subseteq G$ with N finite;

- **2** an *H*-invariant ideal *I* of S_e such that $I^{\times}I = \{0\}$ for every $x \in G \setminus H$, and
- **3** nonzero H/N-invariant ideals \tilde{A}, \tilde{B} of S_N such that $\tilde{A}, \tilde{B} \subseteq IS_N$ and $\tilde{A}\tilde{B} = \{0\}$.

Remark

Let S be a unital strongly G-graded ring. "Passman"-invariant ideal coincide with invariant ideal ($I^x \subseteq I \iff I^x = I$). H/N-invariant implies H-invariant.

Torsion-free grading groups

Definition

A proper G-invariant ideal Q of S_e is called G-prime if for all G-invariant ideals A, B of S_e we have $A \subseteq Q$ or $B \subseteq Q$ whenever $AB \subseteq Q$. The ring S_e is called G-prime if $\{0\}$ is a G-prime ideal of S_e .

Theorem (L., Lundström, Öinert, Wagner, 2021)

Suppose that G is torsion-free and that S is nearly epsilon-strongly G-graded. Then S is prime if and only if S_e is G-prime.

Prime Leavitt path algebras via nearly epsilon-strongly graded rings Application 1: Prime Leavitt path algebras

Table of Contents

- 1 Nearly epsilon-strongly graded rings
- 2 Leavitt path algebras
- 3 Main result: Prime nearly epsilon-strongly graded rings
- 4 Application 1: Prime Leavitt path algebras
- 5 Application 2: Prime partial crossed products
- 6 The Graded Prime Spectrum of nearly epsilon-strongly graded rings

Prime Leavitt path algebras via nearly epsilon-strongly graded rings Application 1: Prime Leavitt path algebras

Application to Prime Leavitt path algebras

Definition

Let *E* be a directed graph. The graph *E* is said to satisfy Condition (MT-3) if for every pair of vertices $u, v \in E^0$, there is some vertex $w \in E^0$ such that there are paths (possibly of zero length) from *u* to *w* and from *v* to *w*. (Confluence vertex *w*).

Example

$$A_n: \qquad \bullet_{v_1} \xrightarrow{f_1} \bullet_{v_2} \xrightarrow{f_2} \dots \xrightarrow{f_{n-1}} \bullet_{v_n}$$

Note that A_n satisfies (MT-3).

Prime Leavitt path algebras via nearly epsilon-strongly graded rings Application 1: Prime Leavitt path algebras

Application to Prime Leavitt path algebras

The following theorem generalizes work by Abrams-Bell-Rangaswamy and Larki:

Theorem (L., Lundström, Öinert, Wagner 2021)

Let $L_R(E)$ be a Leavitt path algebra over a unital ring R. Then $L_R(E)$ is prime if and only if R is prime and E satisfied Condition (MT-3).

Example

Take $E := A_n$ in the above theorem. Then $L_R(A_n) \cong M_n(R)$ is prime if and only if R is prime.

Prime Leavitt path algebras via nearly epsilon-strongly graded rings Application 2: Prime partial crossed products

Table of Contents

- 1 Nearly epsilon-strongly graded rings
- 2 Leavitt path algebras
- 3 Main result: Prime nearly epsilon-strongly graded rings
- 4 Application 1: Prime Leavitt path algebras
- 5 Application 2: Prime partial crossed products
- 6 The Graded Prime Spectrum of nearly epsilon-strongly graded rings

Prime Leavitt path algebras via nearly epsilon-strongly graded rings Application 2: Prime partial crossed products

Unital partial crossed products

Definition

A unital twisted partial action of G on R is a triple $(\{\alpha_g\}_{g\in G}, \{D_g\}_{g\in G}, \{w_{g,h}\}_{(g,h)\in G\times G})$ where for each $g\in G$, the D_g 's are unital ideals of R, $\alpha_g: D_{g^{-1}} \to D_g$ are ring isomorphisms and for each $(g, h) \in G \times G$, $w_{\sigma, h}$ is an invertible element in $D_{\sigma}D_{\sigma h}$. For all $g, h \in G$: (P1) $\alpha_{e} = \mathrm{id}_{R}$; (P2) $\alpha_g(D_{g^{-1}}D_h) = D_g D_{gh};$ (P3) if $r \in D_{h^{-1}}D_{(\sigma h)^{-1}}$, then $\alpha_g(\alpha_h(r)) = w_{g,h}\alpha_{gh}(r)w_{\sigma,h}^{-1}$; (P4) $w_{e,\sigma} = w_{\sigma,e} = 1_{\sigma};$ (P5) if $r \in D_{\sigma^{-1}}D_hD_{hl}$, then $\alpha_{\sigma}(rw_{hl})w_{\sigma,hl} = \alpha_{\sigma}(r)w_{\sigma,h}w_{\sigma,hl}$.

Application 2: Prime partial crossed products

Definition

Given a unital twisted partial action of G on R, we can form the *unital partial crossed* product $R \star_{\alpha}^{w} G = \bigoplus_{g \in G} D_{g} \delta_{g}$ where the δ_{g} 's are formal symbols. For $g, h \in G, r \in D_{g}$ and $r' \in D_{h}$ the multiplication is defined by the rule: (P6) $(r\delta_{g})(r'\delta_{h}) = r\alpha_{g}(r'1_{g^{-1}})w_{g,h}\delta_{gh}$.

 $R \star^{w}_{\alpha} G$ is an associative ring with a natural epsilon-strong *G*-grading (Nystedt-Öinert-Pinedo).

Theorem (L., Lundström, Öinert, Wagner, 2021)

Suppose that G is torsion-free and that $R \star_{\alpha}^{w} G$ is a unital partial crossed product. Then $R \star_{\alpha}^{w} G$ is prime if and only if R is G-prime.

Application 2: Prime partial crossed products

Theorem (L.,Lundström, Öinert, Wagner, 2021)

The unital partial crossed product $R \star^w_{\alpha} G$ is not prime if and only if there are:

- **1** subgroups $N \lhd H \subseteq G$ with N finite,
- **2** an ideal I of R such that

•
$$\alpha_h(I_{h^{-1}}) = I_h$$
 for every $h \in H$,

•
$$I \cdot lpha_{g}(I1_{g^{-1}}) = \{0\}$$
 for every $g \in G \setminus H$, and

3 nonzero ideals \tilde{A}, \tilde{B} of $R \star_{\alpha}^{w} N$ such that $\tilde{A}, \tilde{B} \subseteq I \cdot (R \star_{\alpha}^{w} N)$ and $\tilde{A} \cdot 1_{h} \delta_{h} \cdot \tilde{B} = \{0\}$ for every $h \in H$.

Let The Graded Prime Spectrum of nearly epsilon-strongly graded rings

Table of Contents

- 1 Nearly epsilon-strongly graded rings
- 2 Leavitt path algebras
- 3 Main result: Prime nearly epsilon-strongly graded rings
- 4 Application 1: Prime Leavitt path algebras
- 5 Application 2: Prime partial crossed products
- 6 The Graded Prime Spectrum of nearly epsilon-strongly graded rings

The Graded Prime Spectrum of nearly epsilon-strongly graded rings

Graded prime spectrum of Leavitt path algebras

Definition

A proper graded ideal P of S is called graded prime if for all graded ideals A, B of S, we have $A \subseteq P$ or $B \subseteq P$ whenever $AB \subseteq P$.

1 Spec_{γ}($L_k(E)$) is used in the construction of the *algebraic filtered K-theory* by Eilers-Restorff-Ruiz-Sørensen, 2021.

Spec_{γ}($L_k(E)$) can be described using so-called admissible pairs (I, H) (Larki). Up next: an alternative description of Spec_{γ}(S) for S being a general nearly epsilon-strongly G-graded rings.

- The Graded Prime Spectrum of nearly epsilon-strongly graded rings

The graded prime spectrum of nearly epsilon-strongly graded rings

Let S be a G-graded ring and let I be an ideal of S. Define $I_e := I \cap S_e$.

Theorem (L., Lundström, Öinert, Wagner 2021, cf. Nastasescu-van Oystaeyen)

Let S be nearly epsilon-strongly G-graded. The map $I\mapsto I_e$ is a bijection

 $\{ \text{graded ideals of } S \} \leftrightarrow \{ G - \text{invariant ideals of } S_e \}.$

Definition

A proper G-invariant ideal Q of S_e is called G-prime if for all G-invariant ideals A, B of S_e , we have $A \subseteq Q$ or $B \subseteq Q$ whenever $AB \subseteq Q$.

The Graded Prime Spectrum of nearly epsilon-strongly graded rings

The graded prime spectrum of nearly epsilon-strongly graded rings

Theorem (L., Lundström, Öinert, Wagner 2021, cf. Nastasescu-van Oystaeyen)

Let S be nearly epsilon-strongly G-graded. The map $I \mapsto I_e$ is a bijection

{graded prime ideals of S} \leftrightarrow {G – prime ideals of S_e }.

Question

Is this useful for developing an algebraic filtered *K*-theory for so-called algebraic Cuntz-Pimsner rings (Carlsen-Ortega), or general nearly epsilon-strongly *G*-graded rings?

- The Graded Prime Spectrum of nearly epsilon-strongly graded rings

Thank you for your attention!