Separability of object unital groupoid graded rings

Patrik Nystedt – University West

SNAG 2020

Joint work with...

Hector Pinedo

• Juan Cala

(Universidad Industrial de Santander, Colombia)

Outline

- Separable field extensions
- Separable unital ring extensions
- Separability for strongly group graded rings
- Separable functors
- Separable nonunital ring extensions
- Separability for object unital strongly groupoid graded rings

(Galois, Weber 1893, Steinitz 1910)

An algebraic field extension L/K is called separable if for all $a \in L$ the minimal polynomial of a does not have any double roots in an algebraic closure of K.

Theorem A

If L/K is a finite field extension, then the following are equivalent:

- \bullet L/K is separable.
- $1 \in tr(L)$.

Let L/K be a finite field extension of degree n. Given $f \in End_K(L)$ define Tr(f) as the diagonal sum of a matrix representation of f in $M_n(K)$. Given $a \in L$ define $\lambda_a \in End_K(L)$ as the map

$$\lambda_a(x) = ax$$

for $x \in L$. Define the field trace map

$$tr:L\to K$$

by

$$tr(a) = Tr(\lambda_a)$$

for $a \in L$.

Tensor products

(\mathbb{R}^n : Gibbs 1886, Abelian groups: Whitney 1938,

Modules: Bourbaki 1948)

If

 L_1/K

and

 L_2/K

are field extensions, then

$$L_1 \otimes_K L_2$$

is a commutative K-algebra which may not be a field. Hence, it may contain nilpotent elements.

(Köthe 1930)

If A is a commutative finite dimensional K-algebra, then the nilradical Nil(A) of A is the ideal of A consisting of the set of nilpotent elements of A.

Proposition

If A is a commutative finite dimensional K-algebra, then $Nil(A) = \{0\} \Leftrightarrow A$ is a finite direct product of fields. In that case, A is a semisimple algebra and hence all left A-modules are projective.

Proposition

If L/K is a finite field extension, then the following are equivalent:

- \bullet L/K is separable.
- $Nil(L \otimes_K L) = \{0\}.$
- L is projective as an $L \otimes_K L$ -module (or equivalently as an L-bimodule).
- The multiplication map $m:L\otimes_K L\to L$ is split by some L-bimodule homomorphism $\delta:L\to L\otimes_K L$.
- There exists $e \in L \otimes_K L$ with m(e) = 1 and el = le for all $l \in L$ (choose $e = \delta(1)$ from above). Such an element e is called a separability idempotent.

(B commutative: Auslander-Goldman 1960, B noncommutative: Hirata-Sugano 1966)

Suppose that A/B is a ring extension of unital rings with the same 1. Then A/B is called separable if either of the following equivalent conditions hold:

- A is projective as an $A \otimes_B A^{op}$ -module (or equivalently as an A-bimodule).
- The multiplication map $m:A\otimes_B A\to A$ is split by some A-bimodule homomorphism $\delta:A\to A\otimes_B A$.
- There exists $e \in A \otimes_B A$ with m(e) = 1 and ea = ae for all $a \in A$ (choose $e = \delta(1)$ above).

Examples

• Group ring A = B[G] with B unital. Then A/B is separable if and only if G is finite and |G| is invertible in B. In that case:

$$e = |G|^{-1} \sum_{g \in G} g \otimes g^{-1}.$$

• Matrix ring $A = M_n(B)$ with B unital. Then A/B is always separable with:

$$e = \sum_{i=1}^{n} e_{ij} \otimes e_{ji}$$

for any fixed j.

Let R be a ring and G a group with identity e. The ring R is said to be graded by G, or G-graded, if for all $g \in G$ there is an additive subgroup R_g of R such that:

- $R = \bigoplus_{g \in G} R_g$ as additive groups, and
- for all $g, h \in G$ the inclusion $R_g R_h \subseteq R_{gh}$ holds.

In that case R is said to be strongly graded by G if for all $g,h\in G$ the equality $R_gR_h=R_{gh}$ holds.

Theorem B

(Miyashita 1970, Nastasescu-Van Oystaeyen 1989)

If R is a unital strongly G-graded ring, then the following are equivalent:

- \bullet R/R_e is separable
- $1 \in tr(Z(R_e))$

Remark

Theorem B has been extended to epsilon-strongly group graded rings by ●, Öinert and Pinedo (2018).

Let R be a unital strongly G-graded ring. For all $g \in G$ take $n_g \in \mathbb{N}$ and $u_g^{(i)} \in R_g$ and $v_{g^{-1}}^{(i)} \in R_{g^{-1}}$, for $i=1,\ldots,n_g$, such that:

$$1 = \sum_{i=1}^{n_g} u_g^{(i)} v_{g^{-1}}^{(i)} \qquad (1 \in R_g R_{g^{-1}})$$

For $g \in G$ define $\gamma_g : Z(R_e) \to Z(R_e)$ by:

$$\gamma_g(x) = \sum_{i=1}^{n_g} u_g^{(i)} x v_{g^{-1}}^{(i)}$$

for $x \in Z(R_e)$. If G is finite, then put:

$$tr(x) = \sum_{g \in G} \gamma_g(x)$$

for $x \in Z(R_e)$.

Proposition

(*B* commutative: Hattori 1963,

B noncommutative: Hirata-Sugano 1966)

If A/B be a separable extension of unital rings, then every submodule of a left A-module which is a B-direct summand is an A-direct summand (in other words, A/B is "semisimple").

Let A/B be a ring extension. We let:

$$\varphi: B \to A$$

denote the inclusion map. To φ we associate the restriction functor:

$$\varphi_*:A ext{-mod} o B ext{-mod}$$

which to a left A-module associates its natural structure as a left B-module.

(Nastasescu-Van Oystaeyen 1989)

Let C and D be categories. A functor $F:C\to D$ is called separable if for all $M,N\in \mathrm{Ob}(C)$, there is $\psi_{M,N}:\mathrm{Hom}_D(F(M),F(N))\to \mathrm{Hom}_C(M,N)$ with:

- $\psi_{M,M'}(F(\alpha)) = \alpha$
- $F(\beta)f = gF(\alpha) \Rightarrow \beta \psi_{M,N}(f) = \psi_{M',N'}(g)\alpha$

for all $M, N, M', N' \in ob(C)$, all $\alpha \in Hom_C(M, M')$, all $\beta \in Hom_C(N, N')$, all $f \in Hom_D(F(M), F(N))$ and all $g \in Hom_D(F(N'), F(M'))$.

Theorem C

(Nastasescu-Van Oystaeyen 1989)

If A/B is a ring extension of unital rings, then the following are equivalent:

- \bullet A/B is separable.
- The restriction functor φ_* : A-mod $\to B$ -mod is separable.

Remark

Suppose that A/B is a separable extension of unital rings. Let $\sum_{i \in I} x_i \otimes y_i \in A \otimes_B A$ be a separability idempotent for A/B. Define:

$$\psi_{M,N}: \operatorname{Hom}_B(M,N) \to \operatorname{Hom}_A(M,N)$$

by:

$$\psi_{M,N}(f)(m) = \sum_{i \in I} x_i f(y_i m)$$

for $f \in \text{Hom}_B(M, N)$ and $m \in M$.

Proposition

(Nastasescu-Van Oystaeyen 1989)

Let $F: C \to D$ and $G: D \to E$ be functors.

- F and G separable $\Rightarrow GF$ separable.
- GF separable $\Rightarrow F$ separable.

Suppose that F is separable:

- $f \in Hom_C(M,N)$ and F(f) has a left (or right, or two-sided) inverse in $D \Rightarrow f$ has a left (or right, or two-sided) inverse in C.
- F preserves epimorphisms (monomorphisms) \Rightarrow F reflects projective (injective) objects.

By a groupoid \mathcal{G} we mean a small category with the property that all morphisms are isomorphisms. Equivalently, it can be defined by saying that \mathcal{G} is a non-empty set equipped with a unary operation

$$\mathcal{G} \ni \sigma \mapsto \sigma^{-1} \in \mathcal{G}$$
 (inversion)

and a partial binary operation

$$\mathcal{G} \times \mathcal{G} \ni (\sigma, \tau) \mapsto \sigma \tau \in \mathcal{G}$$
 (composition)

such that $\forall \sigma, \tau, \rho \in \mathcal{G}$ the following four axioms hold:

$$\bullet \ (\sigma^{-1})^{-1} = \sigma$$

- if $\sigma \tau$ and $\tau \rho$ are defined, then $(\sigma \tau) \rho$ and $\sigma(\tau \rho)$ are defined and equal
- the domain $d(\sigma):=\sigma^{-1}\sigma$ is always defined and if $\sigma\tau$ is defined, then $d(\sigma)\tau=\tau$
- the range $r(\tau) := \tau \tau^{-1}$ is always defined and if $\sigma \tau$ is defined, then $\sigma r(\tau) = \sigma$.

Let G be a groupoid.

- $G_0 := d(G) = r(G)$ is called the unit space of G
- $\mathcal{G}_1 := \mathcal{G}$
- $\mathcal{G}_2 := \{(\sigma, \tau) \in \mathcal{G} \times \mathcal{G} \mid \sigma\tau \text{ is defined}\}$

Suppose that R is a ring and that \mathcal{G} is a groupoid. We say that R is graded by \mathcal{G} if there for all $\sigma \in \mathcal{G}$ is an additive subgroup R_{σ} of R such that

$$R = \bigoplus_{\sigma \in \mathcal{G}} R_{\sigma}$$

and $\forall \sigma, \tau \in \mathcal{G}$

$$R_{\sigma}R_{\tau} \subseteq R_{\sigma\tau}$$
 if $(\sigma,\tau) \in \mathcal{G}_2$

$$R_{\sigma}R_{\tau} = \{0\}$$
 if $(\sigma, \tau) \notin \mathcal{G}_2$.

In that case, if $\forall (\sigma, \tau) \in G_2$ $R_{\sigma}R_{\tau} = R_{\sigma\tau}$, then we say that R is strongly graded by \mathcal{G} .

If R is a ring which is graded by a groupoid G, then we say that R is object unital if

- ullet $\forall e \in \mathcal{G}_0$ R_e is unital, and
- $\bullet \ \forall \sigma \in \mathcal{G} \ \ \forall r \in R_{\sigma} \ \ \mathbf{1}_{R_{r(\sigma)}} r = r \mathbf{1}_{R_{d(\sigma)}} = r$

Remark

If R is a ring which is graded by a groupoid \mathcal{G} , and R is object unital, then R is a ring with enough idempotents (namely the 1_{R_e} for $e \in \mathcal{G}_0$).

Let \mathcal{G} be a groupoid and $e \in \mathcal{G}_0$. Define the group:

$$\mathcal{G}(e) = \{ \sigma \in \mathcal{G} \mid d(\sigma) = r(\sigma) = e \}.$$

This is called the principal group at e. Suppose that R is a ring which is graded by \mathcal{G} . Let \mathcal{H} be a subgroupoid of \mathcal{G} . We put:

$$R_{\mathcal{H}} = \bigoplus_{\sigma \in \mathcal{H}} R_{\sigma}.$$

Then $R_{\mathcal{H}}$ is graded by \mathcal{H} . We also put:

$$R_0 = R_{\mathcal{G}_0}.$$

Theorem D

(Cala, •, Pinedo 2020)

If \mathcal{G} is a groupoid and R is an object unital strongly \mathcal{G} -graded ring, then the following are equivalent:

- The functor $\varphi_* : R\text{-Mod} \to R_0\text{-Mod}$, associated to the inclusion map $\varphi : R_0 \to R$, is separable.
- R/R_0 is separable.
- For all $e \in \mathcal{G}_0$, $R_{\mathcal{G}(e)}/R_e$ is separable.
- For all $e \in \mathcal{G}_0$, $\mathcal{G}(e)$ is finite and $1_{R_e} \in \operatorname{tr}_e(Z(R_e))$.

Remark: Bagio and Pinedo (2017) have shown a version of Theorem D that holds for partial skew groupoid rings.

(Taylor 1982, Brzezinski 2002)

Suppose that A and B are (not necessarily unital) rings with $A \supseteq B$. Then A/B is called separable if the multiplication map:

$$m:A\otimes_BA\to A$$

is split by some A-bimodule homomorphism:

$$\delta: A \to A \otimes_B A$$
.

Theorem E

(Cala, •, Pinedo 2020)

If A/B is an extension of rings with enough idempotents such that $\{e_i\}_{i\in I}\subseteq B$ is a complete set of idempotents for both A and B, then the following are equivalent:

- The functor $\varphi_* : A\operatorname{\mathsf{-Mod}} \to B\operatorname{\mathsf{-Mod}}$, associated to the inclusion map $\varphi : B \to A$, is separable
- \bullet A/B is separable.
- For all $i \in I$ there exists an element $x_i \in \sum_{j \in I} e_i A e_j \otimes_B e_j A e_i$ such that for all $j \in I$ and all $a \in e_i A e_j$, the equalities $\mu(x_i) = e_i$ and $x_i a = a x_j$ hold.

Questions

- Can we generalize Theorem D to epsilon-strongly groupoid graded rings?
- What is the connection between Theorem D (or at least Theorem B) and Theorem A?

Thank you!