# Twisted connections on projective modules

Kwalombota Ilwale

3rd Workshop of the Swedish Network for Algebra and Geometry, September 24, 2020

## In the paper

[AIL20] On q-deformed Levi-Civita connections.

J. Arnlind, K. Ilwale, G. Landi. arXiv:2005.02603

In the paper

[AIL20] On q-deformed Levi-Civita connections.

J. Arnlind, K. Ilwale, G. Landi. arXiv:2005.02603

we started from certain  $(\sigma,\tau)$ -derivations on the quantum 3-sphere  $\mathcal{A}=S_q^3$ , i.e. a linear maps  $X:\mathcal{A}\to\mathcal{A}$  satisfying a Leibniz rule

$$X(fg) = \sigma(f)X(g) + X(f)\tau(g)$$

for  $f, g \in A$ ,

In the paper

[AIL20] On q-deformed Levi-Civita connections.

J. Arnlind, K. Ilwale, G. Landi. arXiv:2005.02603

we started from certain  $(\sigma, \tau)$ -derivations on the quantum 3-sphere  $\mathcal{A} = S_q^3$ , i.e. a linear maps  $X: \mathcal{A} \to \mathcal{A}$  satisfying a Leibniz rule

$$X(fg) = \sigma(f)X(g) + X(f)\tau(g)$$

for  $f, g \in A$ , and introduced a  $(\sigma, \tau)$ -connection  $\nabla$ , fulfilling a corresponding twisted Leibniz rule

$$\nabla_X(fm) = \sigma(f)\nabla_X(m) + X(f)\hat{\tau}(m)$$

for  $f \in \mathcal{A}$  and elements m in a (left)  $\mathcal{A}$ -module M, where  $\hat{\tau}$  is an extension of  $\tau$  to M (to be defined later).



Moreover, we introduced corresponding concepts of metric compatibility and torsion-freeness of such a connection.

We proved that there exists a class of metric and torsion-free connections ("Levi-Civita connections") on the (standard) module of differential forms over  $S_a^3$ .

In this talk I will report on current work on extending these ideas to general algebras and  $(\sigma, \tau)$ -derivations.

▶ Let  $\mathcal A$  be an associative algebra and  $\sigma, \tau: \mathcal A \to \mathcal A$  be algebra endomorphisms.

- ▶ Let  $\mathcal{A}$  be an associative algebra and  $\sigma, \tau : \mathcal{A} \to \mathcal{A}$  be algebra endomorphisms.
  - $\blacktriangleright$  A derivation is a linear map  $X:\mathcal{A}\to\mathcal{A}$  satisfying the Leibniz rule

$$X(fg) = fX(g) + X(f)g$$

for 
$$f, g \in A$$
.

- ▶ Let  $\mathcal A$  be an associative algebra and  $\sigma, \tau: \mathcal A \to \mathcal A$  be algebra endomorphisms.
  - A derivation is a linear map  $X:\mathcal{A}\to\mathcal{A}$  satisfying the Leibniz rule

$$X(fg) = fX(g) + X(f)g$$

for  $f, g \in A$ .

▶ A  $(\sigma, \tau)$ -derivation is a linear map  $X : A \to A$  satisfying a Leibniz rule

$$X(fg) = \sigma(f)X(g) + X(f)\tau(g)$$

for  $f, g \in A$ .

- ▶ Let  $\mathcal A$  be an associative algebra and  $\sigma, \tau: \mathcal A \to \mathcal A$  be algebra endomorphisms.
  - $lackbox{ A derivation is a linear map } X: \mathcal{A} 
    ightarrow \mathcal{A}$  satisfying the Leibniz rule

$$X(fg) = fX(g) + X(f)g$$

for  $f, g \in A$ .

▶ A  $(\sigma, \tau)$ -derivation is a linear map  $X : A \to A$  satisfying a Leibniz rule

$$X(fg) = \sigma(f)X(g) + X(f)\tau(g)$$

for  $f, g \in A$ .

A  $(\sigma, \tau)$ -derivation can be regarded as a twisted derivation from which we can construct a twisted connection.

► In this work, we would like to generalise the work in [AIL20] by

- ► In this work, we would like to generalise the work in [AIL20] by
  - introducing a linear map  $X_a: A \to A$  satisfying the Leibniz rule

$$X_a(fg) = \sigma_a(f)X_a(g) + X_a(f)\tau_a(g)$$

for  $f, g \in A$ , and  $a \in I$ .

- ► In this work, we would like to generalise the work in [AIL20] by
  - introducing a linear map  $X_a: \mathcal{A} \to \mathcal{A}$  satisfying the Leibniz rule

$$X_a(fg) = \sigma_a(f)X_a(g) + X_a(f)\tau_a(g)$$

for  $f, g \in \mathcal{A}$ , and  $a \in I$ .

• constructing a connection  $abla_{X_a}: M \to M$  satisfying a Leibniz rule

$$abla_{X_a}(fm) = \sigma_a(f) \nabla_{X_a}(m) + X_a(f) \hat{\tau}_a(m)$$

for  $a \in I$ ,  $f \in \mathcal{A}$  and  $m \in M$  where  $\sigma_a, \tau_a, : \mathcal{A} \to \mathcal{A}$  are algebra endomorphisms and  $\hat{\tau}_a : M \to M$  is a map such that

$$\hat{\tau}_a(fm) = \tau_a(f)\hat{\tau}_a(m)$$

- ► In this work, we would like to generalise the work in [AIL20] by
  - introducing a linear map  $X_a: \mathcal{A} \to \mathcal{A}$  satisfying the Leibniz rule

$$X_a(fg) = \sigma_a(f)X_a(g) + X_a(f)\tau_a(g)$$

for  $f, g \in \mathcal{A}$ , and  $a \in I$ .

• constructing a connection  $abla_{X_a}: M \to M$  satisfying a Leibniz rule

$$abla_{X_a}(fm) = \sigma_a(f) \nabla_{X_a}(m) + X_a(f) \hat{\tau}_a(m)$$

for  $a \in I$ ,  $f \in \mathcal{A}$  and  $m \in M$  where  $\sigma_a, \tau_a, : \mathcal{A} \to \mathcal{A}$  are algebra endomorphisms and  $\hat{\tau}_a : M \to M$  is a map such that

$$\hat{\tau}_{a}(fm) = \tau_{a}(f)\hat{\tau}_{a}(m)$$

Finally, we would like to call such a connection a  $(\sigma, \tau)$ -connection and show that it exists on projective modules.

# $(\sigma, \tau)$ -algebra

#### Definition 1

Let  $\mathcal A$  be an associative algebra and let  $\sigma$  and  $\tau$  be endomorphisms of  $\mathcal A$ . A  $\mathbb C$  - linear map  $X:\mathcal A\to\mathcal A$  is called a  $(\sigma,\tau)$ -derivation if

$$X(fg) = \sigma(f)X(g) + X(f)\tau(g)$$

for every  $f, g \in A$ .

# $(\sigma, \tau)$ -algebra

#### Definition 1

Let  $\mathcal A$  be an associative algebra and let  $\sigma$  and  $\tau$  be endomorphisms of  $\mathcal A$ . A  $\mathbb C$  - linear map  $X:\mathcal A\to\mathcal A$  is called a  $(\sigma,\tau)$ -derivation if

$$X(fg) = \sigma(f)X(g) + X(f)\tau(g)$$

for every  $f, g \in A$ .

### Definition 2

A  $(\sigma, \tau)$ -algebra  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  is a pair where  $\mathcal{A}$  is an associative algebra (over  $\mathbb{C}$ ) and  $X_a$  is a  $(\sigma_a, \tau_a)$ -derivation of  $\mathcal{A}$  for  $a \in I$ .

# $(\sigma, \tau)$ -algebra

#### Definition 1

Let  $\mathcal A$  be an associative algebra and let  $\sigma$  and  $\tau$  be endomorphisms of  $\mathcal A$ . A  $\mathbb C$  - linear map  $X:\mathcal A\to\mathcal A$  is called a  $(\sigma,\tau)$ -derivation if

$$X(fg) = \sigma(f)X(g) + X(f)\tau(g)$$

for every  $f, g \in A$ .

#### **Definition 2**

A  $(\sigma, \tau)$ -algebra  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  is a pair where  $\mathcal{A}$  is an associative algebra (over  $\mathbb{C}$ ) and  $X_a$  is a  $(\sigma_a, \tau_a)$ -derivation of  $\mathcal{A}$  for  $a \in I$ .

#### **Definition 3**

For a  $(\sigma, \tau)$ -algebra  $\Sigma = (A, \{X_a\}_{a \in I})$  we let

$$T\Sigma \subseteq \mathsf{Hom}_{\mathbb{C}}(\mathcal{A},\mathcal{A})$$

be the vector space generated by  $\{X_a\}_{a\in I}$ . We call  $T\Sigma$  the tangent space of  $\Sigma$ .

### Σ-module

#### Definition 4

Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ -algebra. A *left*  $\Sigma$ -module  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  is a left  $\mathcal{A}$ -module M together with  $\mathbb{C}$ -linear maps  $\hat{\sigma}_a, \hat{\tau}_a : M \to M$  such that

$$\hat{\sigma}_a(fm) = \sigma_a(f)\hat{\sigma}_a(m)$$

$$\hat{\tau}_a(fm) = \tau_a(f)\hat{\tau}_a(m)$$

for  $f \in \mathcal{A}$ ,  $m \in M$  and  $a \in I$ .

### Σ-module

#### Definition 4

Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ -algebra. A *left*  $\Sigma$ -module  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  is a left  $\mathcal{A}$ -module M together with  $\mathbb{C}$ -linear maps  $\hat{\sigma}_a, \hat{\tau}_a : M \to M$  such that

$$\hat{\sigma}_a(fm) = \sigma_a(f)\hat{\sigma}_a(m)$$

$$\hat{\tau}_a(fm) = \tau_a(f)\hat{\tau}_a(m)$$

for  $f \in \mathcal{A}$ ,  $m \in M$  and  $a \in I$ .

#### Definition 5

Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ -algebra and let  $(M_1, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  and  $(M_2, \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  be left  $\Sigma$ -modules. A  $(\sigma, \tau)$ -module homomorphism is an  $\mathcal{A}$ -module homomorphism  $\phi: M_1 \to M_2$  such that

$$\phi(\hat{\sigma}_a(m)) = \tilde{\sigma}_a(\phi(m)) \quad \phi(\hat{\tau}_a(m)) = \tilde{\tau}_a(\phi(m))$$

for  $m \in M_1$  and  $a \in I$ .



Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ -algebra and let  $\mathcal{A}^n$  be a free (left)  $\mathcal{A}$ -module with a basis  $e_1, \ldots, e_n$ .

Let  $\Sigma = (A, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ -algebra and let  $A^n$  be a free (left) A-module with a basis  $e_1, \ldots, e_n$ .

One can introduce a canonical  $\Sigma$ -module structure on  $\mathcal{A}^n$  by setting

$$\hat{\sigma}_{\mathsf{a}}^{0}(m) = \sigma_{\mathsf{a}}(m^{i})e_{i}, \quad \hat{\tau}_{\mathsf{a}}^{0}(m) = \tau_{\mathsf{a}}(m^{i})e_{i}$$

for  $m = m^i e_i \in \mathcal{A}^n$ .

Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ -algebra and let  $\mathcal{A}^n$  be a free (left)  $\mathcal{A}$ -module with a basis  $e_1, \ldots, e_n$ .

One can introduce a canonical  $\Sigma$ -module structure on  $\mathcal{A}^n$  by setting

$$\hat{\sigma}_{\mathsf{a}}^{0}(m) = \sigma_{\mathsf{a}}(m^{i})e_{i}, \quad \hat{\tau}_{\mathsf{a}}^{0}(m) = \tau_{\mathsf{a}}(m^{i})e_{i}$$

for  $m = m^i e_i \in \mathcal{A}^n$ .

One has

$$\begin{split} \hat{\sigma}_a^0(fm) &= \sigma_a(fm^i)e_i = \sigma_a(f)\sigma_a(m^i)e_i = \sigma_a(f)\hat{\sigma}_a^0(m) \\ \hat{\tau}_a^0(fm) &= \tau_a(fm^i)e_i = \tau_a(f)\tau_a(m^i)e_i = \tau_a(f)\hat{\tau}_a^0(m), \end{split}$$

showing that  $(\mathcal{A}^n, \{(\hat{\sigma}_a^0, \hat{\tau}_a^0)\}_{a \in I})$  is a (left)  $\Sigma$ -module.

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a  $\Sigma$ -module and let  $T: M \to M$  be a (left) module homomorphism.

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a  $\Sigma$ -module and let  $T: M \to M$  be a (left) module homomorphism. Then  $(T(M), \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  is a (left)  $\Sigma$ -module where  $\tilde{\sigma}_a = T \circ \hat{\sigma}_a$  and  $\tilde{\tau}_a = T \circ \hat{\tau}_a$ .

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a  $\Sigma$ -module and let  $T: M \to M$  be a (left) module homomorphism. Then  $(T(M), \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  is a (left)  $\Sigma$ -module where  $\tilde{\sigma}_a = T \circ \hat{\sigma}_a$  and  $\tilde{\tau}_a = T \circ \hat{\tau}_a$ .

Example 8

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a  $\Sigma$ -module and let  $T: M \to M$  be a (left) module homomorphism. Then  $(T(M), \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  is a (left)  $\Sigma$ -module where  $\tilde{\sigma}_a = T \circ \hat{\sigma}_a$  and  $\tilde{\tau}_a = T \circ \hat{\tau}_a$ .

# Example 8

Let  $p: \mathcal{A}^n \to \mathcal{A}^n$  be a projection, implying that  $p\mathcal{A}^n$  is a (left) projective  $\mathcal{A}$ -module.

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a  $\Sigma$ -module and let  $T: M \to M$  be a (left) module homomorphism. Then  $(T(M), \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  is a (left)  $\Sigma$ -module where  $\tilde{\sigma}_a = T \circ \hat{\sigma}_a$  and  $\tilde{\tau}_a = T \circ \hat{\tau}_a$ .

## Example 8

Let  $p:\mathcal{A}^n \to \mathcal{A}^n$  be a projection, implying that  $p\mathcal{A}^n$  is a (left) projective  $\mathcal{A}$ -module. Defining  $\tilde{\sigma}_a, \tilde{\tau}_a: p\mathcal{A}^n \to p\mathcal{A}^n$  by  $\tilde{\sigma}_a = p \circ \hat{\sigma}_a^0$  and  $\tilde{\tau}_a = p \circ \hat{\tau}_a^0$  (restricted to  $p\mathcal{A}^n$ ), where  $\hat{\sigma}_a^0(m) = \sigma_a(m^i)e_i$ ,  $\hat{\tau}_a^0(m) = \tau_a(m^i)e_i$ ,

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a  $\Sigma$ -module and let  $T: M \to M$  be a (left) module homomorphism. Then  $(T(M), \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  is a (left)  $\Sigma$ -module where  $\tilde{\sigma}_a = T \circ \hat{\sigma}_a$  and  $\tilde{\tau}_a = T \circ \hat{\tau}_a$ .

## Example 8

Let  $p:\mathcal{A}^n \to \mathcal{A}^n$  be a projection, implying that  $p\mathcal{A}^n$  is a (left) projective  $\mathcal{A}$ -module. Defining  $\tilde{\sigma}_a, \tilde{\tau}_a: p\mathcal{A}^n \to p\mathcal{A}^n$  by  $\tilde{\sigma}_a = p \circ \hat{\sigma}_a^0$  and  $\tilde{\tau}_a = p \circ \hat{\tau}_a^0$  (restricted to  $p\mathcal{A}^n$ ), where  $\hat{\sigma}_a^0(m) = \sigma_a(m^i)e_i$ ,  $\hat{\tau}_a^0(m) = \tau_a(m^i)e_i$ , one finds that for  $m \in M$  and  $f \in \mathcal{A}$ 

$$\begin{split} \tilde{\sigma}_{a}(fm) &= p(\hat{\sigma}_{a}^{0}(fm)) = \sigma_{a}(f)p(\hat{\sigma}_{a}^{0}(m)) = \sigma_{a}(f)\tilde{\sigma}_{a}(m) \\ \tilde{\tau}_{a}(fm) &= p(\hat{\tau}_{a}^{0}(fm)) = \tau_{a}(f)p(\hat{\tau}_{a}^{0}(m)) = \tau_{a}(f)\tilde{\tau}_{a}(m), \end{split}$$

showing that  $(pA^n, \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  is a  $\Sigma$ -module.

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a  $\Sigma$ -module and let  $T: M \to M$  be a (left) module homomorphism. Then  $(T(M), \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  is a (left)  $\Sigma$ -module where  $\tilde{\sigma}_a = T \circ \hat{\sigma}_a$  and  $\tilde{\tau}_a = T \circ \hat{\tau}_a$ .

## Example 8

Let  $p:\mathcal{A}^n \to \mathcal{A}^n$  be a projection, implying that  $p\mathcal{A}^n$  is a (left) projective  $\mathcal{A}$ -module. Defining  $\tilde{\sigma}_a, \tilde{\tau}_a: p\mathcal{A}^n \to p\mathcal{A}^n$  by  $\tilde{\sigma}_a = p \circ \hat{\sigma}_a^0$  and  $\tilde{\tau}_a = p \circ \hat{\tau}_a^0$  (restricted to  $p\mathcal{A}^n$ ), where  $\hat{\sigma}_a^0(m) = \sigma_a(m^i)e_i$ ,  $\hat{\tau}_a^0(m) = \tau_a(m^i)e_i$ , one finds that for  $m \in M$  and  $f \in \mathcal{A}$ 

$$\begin{split} \tilde{\sigma}_{a}(fm) &= p(\hat{\sigma}_{a}^{0}(fm)) = \sigma_{a}(f)p(\hat{\sigma}_{a}^{0}(m)) = \sigma_{a}(f)\tilde{\sigma}_{a}(m) \\ \tilde{\tau}_{a}(fm) &= p(\hat{\tau}_{a}^{0}(fm)) = \tau_{a}(f)p(\hat{\tau}_{a}^{0}(m)) = \tau_{a}(f)\tilde{\tau}_{a}(m), \end{split}$$

showing that  $(p\mathcal{A}^n, \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  is a  $\Sigma$ -module. Hence, every projective  $\mathcal{A}$ -module can be endowed with the structure of a  $\Sigma$ -module.

Let  $(M, \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  be a  $\Sigma$ -module such that M is a projective A-module.

Let  $(M, \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I})$  be a  $\Sigma$ -module such that M is a projective A-module. Then there exists a projection  $p: A^n \to A^n$  and  $\{\hat{\sigma}_a, \hat{\tau}_a\}$  such that

$$(p\mathcal{A}^n,\{(\hat{\sigma}_a,\hat{\tau}_a)\}_{a\in I})\simeq (M,\{(\tilde{\sigma}_a,\tilde{\tau}_a)\}_{a\in I})$$

and furthermore,  $[\hat{\sigma}_a, p] = [\hat{\tau}_a, p] = 0$ .

Proof.

### Proof.

Assume that M is finitely generated with generators  $e_1, \dots, e_n$ .

#### Proof.

Assume that M is finitely generated with generators  $e_1, \dots, e_n$ . Let  $\phi: \mathcal{A}^n \to M$  be defined by  $\phi(m^i \hat{e}_i) = m^i e_i$ , then  $\phi$  is surjective.

Assume that M is finitely generated with generators  $e_1, \cdots, e_n$ . Let  $\phi: \mathcal{A}^n \to M$  be defined by  $\phi(m^i \hat{e}_i) = m^i e_i$ , then  $\phi$  is surjective. Since M is a projective module, there exists a homomorphism  $\psi: M \to \mathcal{A}^n$  such that  $\phi \circ \psi = \operatorname{Id}_M$ .

Assume that M is finitely generated with generators  $e_1, \cdots, e_n$ . Let  $\phi: \mathcal{A}^n \to M$  be defined by  $\phi(m^i \hat{e}_i) = m^i e_i$ , then  $\phi$  is surjective. Since M is a projective module, there exists a homomorphism  $\psi: M \to \mathcal{A}^n$  such that  $\phi \circ \psi = \operatorname{Id}_M$ . Define  $p: \mathcal{A}^n \to \mathcal{A}^n$  by  $p = \psi \circ \phi$ . Then

$$p^2 = \psi \circ \phi \circ \psi \circ \phi = \psi \circ \phi = p,$$

since  $\phi \circ \psi = \operatorname{Id}_M$ . This shows that p is a projection and  $p\mathcal{A}^n$  is a projective module.

Assume that M is finitely generated with generators  $e_1, \cdots, e_n$ . Let  $\phi: \mathcal{A}^n \to M$  be defined by  $\phi(m^i \hat{e}_i) = m^i e_i$ , then  $\phi$  is surjective. Since M is a projective module, there exists a homomorphism  $\psi: M \to \mathcal{A}^n$  such that  $\phi \circ \psi = \operatorname{Id}_M$ . Define  $p: \mathcal{A}^n \to \mathcal{A}^n$  by  $p = \psi \circ \phi$ . Then

$$p^2 = \psi \circ \phi \circ \psi \circ \phi = \psi \circ \phi = p,$$

since  $\phi \circ \psi = \operatorname{Id}_M$ . This shows that p is a projection and  $p\mathcal{A}^n$  is a projective module. Let  $\hat{\phi} = \phi|_{p\mathcal{A}^n} : p\mathcal{A}^n \to M$  be the restriction of  $\phi$  to  $p\mathcal{A}^n$ . One has

$$p(\psi(m)) = \psi \circ \phi \circ \psi(m) = \psi(m),$$

showing that  $\psi(m) \in p\mathcal{A}^n$  and  $\hat{\phi}(\psi(m)) = m$ .



This shows that  $\psi = \hat{\phi}^{-1}$  and therefore  $\hat{\phi}$  is an isomorphism.

This shows that  $\psi = \hat{\phi}^{-1}$  and therefore  $\hat{\phi}$  is an isomorphism. Set  $\hat{\sigma}_{\mathsf{a}} = \psi \circ \tilde{\sigma}_{\mathsf{a}} \circ \hat{\phi}$  and  $\hat{\tau}_{\mathsf{a}} = \psi \circ \tilde{\tau}_{\mathsf{a}} \circ \hat{\phi}$ . Then

$$\begin{split} \hat{\sigma}_{a}(\mathit{fm}) &= \psi(\tilde{\sigma}_{a}(\hat{\phi}(\mathit{fm}))) = \psi(\tilde{\sigma}_{a}(\mathit{f}\hat{\phi}(\mathit{m}))) = \psi(\sigma_{a}(\mathit{f})\tilde{\sigma}_{a}(\hat{\phi}(\mathit{m}))) \\ &= \sigma_{a}(\mathit{f})\psi(\tilde{\sigma}_{a}(\hat{\phi}(\mathit{m}))) = \sigma_{a}(\mathit{f})\hat{\sigma}_{a}(\mathit{m}). \end{split}$$

This shows that  $\psi = \hat{\phi}^{-1}$  and therefore  $\hat{\phi}$  is an isomorphism. Set  $\hat{\sigma}_{\mathsf{a}} = \psi \circ \tilde{\sigma}_{\mathsf{a}} \circ \hat{\phi}$  and  $\hat{\tau}_{\mathsf{a}} = \psi \circ \tilde{\tau}_{\mathsf{a}} \circ \hat{\phi}$ . Then

$$\begin{split} \hat{\sigma}_{\mathsf{a}}(\mathsf{fm}) &= \psi(\tilde{\sigma}_{\mathsf{a}}(\hat{\phi}(\mathsf{fm}))) = \psi(\tilde{\sigma}_{\mathsf{a}}(f\hat{\phi}(\mathsf{m}))) = \psi(\sigma_{\mathsf{a}}(f)\tilde{\sigma}_{\mathsf{a}}(\hat{\phi}(\mathsf{m}))) \\ &= \sigma_{\mathsf{a}}(f)\psi(\tilde{\sigma}_{\mathsf{a}}(\hat{\phi}(\mathsf{m}))) = \sigma_{\mathsf{a}}(f)\hat{\sigma}_{\mathsf{a}}(\mathsf{m}). \end{split}$$

Similarly,

$$\begin{split} \hat{\tau}_{a}(\mathit{fm}) &= \psi(\tilde{\tau}_{a}(\hat{\phi}(\mathit{fm}))) = \psi(\tilde{\tau}_{a}(\mathit{f}\hat{\phi}(\mathit{m}))) = \psi(\tau_{a}(\mathit{f})\tilde{\tau}_{a}(\hat{\phi}(\mathit{m}))) \\ &= \tau_{a}(\mathit{f})\psi(\tilde{\tau}_{a}(\hat{\phi}(\mathit{m}))) = \tau_{a}(\mathit{f})\hat{\tau}_{a}(\mathit{m}). \end{split}$$

This shows that  $\psi = \hat{\phi}^{-1}$  and therefore  $\hat{\phi}$  is an isomorphism. Set  $\hat{\sigma}_{\mathsf{a}} = \psi \circ \tilde{\sigma}_{\mathsf{a}} \circ \hat{\phi}$  and  $\hat{\tau}_{\mathsf{a}} = \psi \circ \tilde{\tau}_{\mathsf{a}} \circ \hat{\phi}$ . Then

$$\begin{split} \hat{\sigma}_{\mathsf{a}}(\mathsf{fm}) &= \psi(\tilde{\sigma}_{\mathsf{a}}(\hat{\phi}(\mathsf{fm}))) = \psi(\tilde{\sigma}_{\mathsf{a}}(f\hat{\phi}(\mathsf{m}))) = \psi(\sigma_{\mathsf{a}}(f)\tilde{\sigma}_{\mathsf{a}}(\hat{\phi}(\mathsf{m}))) \\ &= \sigma_{\mathsf{a}}(f)\psi(\tilde{\sigma}_{\mathsf{a}}(\hat{\phi}(\mathsf{m}))) = \sigma_{\mathsf{a}}(f)\hat{\sigma}_{\mathsf{a}}(\mathsf{m}). \end{split}$$

Similarly,

$$\begin{split} \hat{\tau}_{a}(\mathit{fm}) &= \psi(\tilde{\tau}_{a}(\hat{\phi}(\mathit{fm}))) = \psi(\tilde{\tau}_{a}(\mathit{f}\,\hat{\phi}(\mathit{m}))) = \psi(\tau_{a}(\mathit{f}\,)\tilde{\tau}_{a}(\hat{\phi}(\mathit{m}))) \\ &= \tau_{a}(\mathit{f}\,)\psi(\tilde{\tau}_{a}(\hat{\phi}(\mathit{m}))) = \tau_{a}(\mathit{f}\,)\hat{\tau}_{a}(\mathit{m}). \end{split}$$

This shows that  $(pA^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  is a  $\Sigma$ -module.

This shows that  $\psi = \hat{\phi}^{-1}$  and therefore  $\hat{\phi}$  is an isomorphism. Set  $\hat{\sigma}_{\mathsf{a}} = \psi \circ \tilde{\sigma}_{\mathsf{a}} \circ \hat{\phi}$  and  $\hat{\tau}_{\mathsf{a}} = \psi \circ \tilde{\tau}_{\mathsf{a}} \circ \hat{\phi}$ . Then

$$\begin{split} \hat{\sigma}_{a}(\mathit{fm}) &= \psi(\tilde{\sigma}_{a}(\hat{\phi}(\mathit{fm}))) = \psi(\tilde{\sigma}_{a}(\mathit{f}\,\hat{\phi}(\mathit{m}))) = \psi(\sigma_{a}(\mathit{f}\,)\tilde{\sigma}_{a}(\hat{\phi}(\mathit{m}))) \\ &= \sigma_{a}(\mathit{f}\,)\psi(\tilde{\sigma}_{a}(\hat{\phi}(\mathit{m}))) = \sigma_{a}(\mathit{f}\,)\hat{\sigma}_{a}(\mathit{m}). \end{split}$$

Similarly,

$$\begin{split} \hat{\tau}_{a}(\mathit{fm}) &= \psi(\tilde{\tau}_{a}(\hat{\phi}(\mathit{fm}))) = \psi(\tilde{\tau}_{a}(\mathit{f}\,\hat{\phi}(\mathit{m}))) = \psi(\tau_{a}(\mathit{f}\,)\tilde{\tau}_{a}(\hat{\phi}(\mathit{m}))) \\ &= \tau_{a}(\mathit{f}\,)\psi(\tilde{\tau}_{a}(\hat{\phi}(\mathit{m}))) = \tau_{a}(\mathit{f}\,)\hat{\tau}_{a}(\mathit{m}). \end{split}$$

This shows that  $(p\mathcal{A}^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  is a  $\Sigma$ -module. In fact one has

$$\begin{split} \hat{\phi} \circ \hat{\sigma}_{\mathsf{a}} &= \hat{\phi} \circ \psi \circ \tilde{\sigma}_{\mathsf{a}} \circ \hat{\phi} = \tilde{\sigma}_{\mathsf{a}} \circ \hat{\phi} \\ \hat{\phi} \circ \hat{\tau}_{\mathsf{a}} &= \hat{\phi} \circ \psi \circ \tilde{\tau}_{\mathsf{a}} \circ \hat{\phi} = \tilde{\tau}_{\mathsf{a}} \circ \hat{\phi}, \end{split}$$

showing that  $\hat{\phi}$  is a  $(\sigma, \tau)$ - isomorphism.



Let  $\psi(m) \in pA^n$ . Using  $\hat{\phi} \circ \psi = id$ , one computes

$$\hat{\sigma}_{\mathbf{a}} \circ \mathbf{p} = \psi \circ \tilde{\sigma}_{\mathbf{a}} \circ \hat{\phi} \circ \psi \circ \hat{\phi} = \psi \circ \tilde{\sigma}_{\mathbf{a}} \circ \hat{\phi}.$$

and

$$p \circ \hat{\sigma}_{\mathsf{a}} = \psi \circ \hat{\phi} \circ \psi \circ \tilde{\sigma}_{\mathsf{a}} \circ \hat{\phi} = \psi \circ \tilde{\sigma}_{\mathsf{a}} \circ \psi$$

giving  $[\hat{\sigma}_a, p] = 0$ . In the similar way one can show that  $[\hat{\tau}_a, p] = 0$ .



# $(\sigma, \tau)$ -connection

#### Definition 10

Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ -algebra and let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a left  $\Sigma$ -module. A left  $(\sigma, \tau)$ -connection on M is a map  $\nabla : T\Sigma \times M \to M$  satisfying

$$\nabla_{X}(m+m') = \nabla_{X}m + \nabla_{X}m'$$

$$\nabla_{X}(\lambda m) = \lambda \nabla_{X}m$$

$$\nabla_{X+Y}m = \nabla_{X}m + \nabla_{Y}m$$

$$\nabla_{\lambda X}m = \lambda \nabla_{X}m$$

$$\nabla_{X_{a}}(fm) = \sigma_{a}(f)\nabla_{X_{a}}m + X_{a}(f)\hat{\tau}_{a}(m)$$

for all  $X, Y \in T\Sigma$ ,  $m, m' \in M$ ,  $\lambda \in \mathbb{C}$  and  $a \in I$ .

Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ - algebra and  $(\mathcal{A}^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a free left  $\Sigma$ -module.

Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ - algebra and  $(\mathcal{A}^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a free left  $\Sigma$ -module. Introduce a map  $\nabla : T\Sigma \times \mathcal{A}^n \to \mathcal{A}^n$ . Choose  $\nabla_X e_i$  arbitrarily and define

$$\nabla_X(m^i e_i) = \sigma_a(m^i) \nabla_X e_i + X(m^i) \hat{\tau}_a(e_i).$$

Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ - algebra and  $(\mathcal{A}^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a free left  $\Sigma$ -module. Introduce a map  $\nabla : T\Sigma \times \mathcal{A}^n \to \mathcal{A}^n$ . Choose  $\nabla_X e_i$  arbitrarily and define

$$\nabla_X(m^i e_i) = \sigma_a(m^i)\nabla_X e_i + X(m^i)\hat{\tau}_a(e_i).$$

For every  $X, Y \in T\Sigma$ , one can easily see that

$$\nabla_X(m+m') = \nabla_X(m) + \nabla_X(m'),$$
  
$$\nabla_{X+Y}(m) = \nabla_X(m) + \nabla_Y(m).$$

Let  $\Sigma = (\mathcal{A}, \{X_a\}_{a \in I})$  be a  $(\sigma, \tau)$ - algebra and  $(\mathcal{A}^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a free left  $\Sigma$ -module. Introduce a map  $\nabla : T\Sigma \times \mathcal{A}^n \to \mathcal{A}^n$ . Choose  $\nabla_X e_i$  arbitrarily and define

$$\nabla_X(m^i e_i) = \sigma_a(m^i)\nabla_X e_i + X(m^i)\hat{\tau}_a(e_i).$$

For every  $X, Y \in T\Sigma$ , one can easily see that

$$abla_X(m+m') = 
abla_X(m) + 
abla_X(m'), 
\nabla_{X+Y}(m) = 
abla_X(m) + 
abla_Y(m).$$

For derivations  $X_a \in T\Sigma$ , one finds that

$$\nabla_{X_a}(fm) = \sigma_a(f)\nabla_{X_a}(m) + X_a(f)\hat{\tau}_a(m)$$

for  $m, m' \in A^n$  and  $f \in A$ .

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a left  $\Sigma$ -module and let  $\nabla$  be a left  $(\sigma, \tau)$ -connection on  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$ . If  $p : M \to M$  is a projection then  $\tilde{\nabla} = p \circ \nabla$  is a left  $(\sigma, \tau)$ -connection on  $(p(M), \{(p \circ \hat{\sigma}_a, p \circ \hat{\tau}_a)\}_{a \in I})$ .

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a left  $\Sigma$ -module and let  $\nabla$  be a left  $(\sigma, \tau)$ -connection on  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$ . If  $p : M \to M$  is a projection then  $\tilde{\nabla} = p \circ \nabla$  is a left  $(\sigma, \tau)$ -connection on  $(p(M), \{(p \circ \hat{\sigma}_a, p \circ \hat{\tau}_a)\}_{a \in I})$ .

Proof.

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a left  $\Sigma$ -module and let  $\nabla$  be a left  $(\sigma, \tau)$ -connection on  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$ . If  $p : M \to M$  is a projection then  $\tilde{\nabla} = p \circ \nabla$  is a left  $(\sigma, \tau)$ -connection on  $(p(M), \{(p \circ \hat{\sigma}_a, p \circ \hat{\tau}_a)\}_{a \in I})$ .

# Proof.

By the first Proposition (7),  $(p(M), \{(p \circ \hat{\sigma}_a, p \circ \hat{\tau}_a)\}_{a \in I})$  is a  $\Sigma$ -module.

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a left  $\Sigma$ -module and let  $\nabla$  be a left  $(\sigma, \tau)$ -connection on  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$ . If  $p : M \to M$  is a projection then  $\tilde{\nabla} = p \circ \nabla$  is a left  $(\sigma, \tau)$ -connection on  $(p(M), \{(p \circ \hat{\sigma}_a, p \circ \hat{\tau}_a)\}_{a \in I})$ .

# Proof.

By the first Proposition (7),  $(p(M), \{(p \circ \hat{\sigma}_a, p \circ \hat{\tau}_a)\}_{a \in I})$  is a  $\Sigma$ -module. Let  $f \in A, m, m' \in M, X_a, X, Y \in T\Sigma$  and define  $\tilde{\nabla} = p \circ \nabla$ .

Let  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  be a left  $\Sigma$ -module and let  $\nabla$  be a left  $(\sigma, \tau)$ -connection on  $(M, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$ . If  $p : M \to M$  is a projection then  $\tilde{\nabla} = p \circ \nabla$  is a left  $(\sigma, \tau)$ -connection on  $(p(M), \{(p \circ \hat{\sigma}_a, p \circ \hat{\tau}_a)\}_{a \in I})$ .

## Proof.

By the first Proposition (7),  $(p(M), \{(p \circ \hat{\sigma}_a, p \circ \hat{\tau}_a)\}_{a \in I})$  is a  $\Sigma$ -module. Let  $f \in A, m, m' \in M, X_a, X, Y \in T\Sigma$  and define  $\tilde{\nabla} = p \circ \nabla$ . One has

$$\tilde{\nabla}_{X_{a}}(fm) = p(\nabla_{X_{a}}(fm)) 
= p(\sigma_{a}(f)\nabla_{X_{a}}m) + p(X_{a}(f)\hat{\tau}_{a}(m)) 
= \sigma_{a}(f)p(\nabla_{X_{a}}m) + X_{a}(f)p(\hat{\tau}_{a}(m)) 
= \sigma_{a}(f)\tilde{\nabla}_{X_{a}}m + X_{a}(f)p \circ \hat{\tau}_{a}(m).$$

To show linearity of the connection on the projective module we have

$$\tilde{\nabla}_{X_a}(\lambda m + m') = p(\lambda \nabla_{X_a}(m)) + p(\nabla_{X_a}(m')) 
= \lambda \tilde{\nabla}_{X_a}(m) + \tilde{\nabla}_{X_a}(m')$$

To show linearity of the connection on the projective module we have

$$\tilde{\nabla}_{X_a}(\lambda m + m') = p(\lambda \nabla_{X_a}(m)) + p(\nabla_{X_a}(m')) 
= \lambda \tilde{\nabla}_{X_a}(m) + \tilde{\nabla}_{X_a}(m')$$

$$\tilde{\nabla}_{\lambda X+Y}(m) = \lambda p(\nabla_X(m)) + p(\nabla_Y(m)) 
= \lambda \tilde{\nabla}_X m + \tilde{\nabla}_Y m.$$

Every projective  $\Sigma$  module has a  $(\sigma, \tau)$ -connection.

Every projective  $\Sigma$  module has a  $(\sigma, \tau)$ -connection.

Proof.

Every projective  $\Sigma$  module has a  $(\sigma, \tau)$ -connection.

#### Proof.

Let  $(M, \{(\tilde{\sigma}_a, \tilde{\tau})\}_{a \in I})$  be a  $\Sigma$ -module with M be a projective module.

Every projective  $\Sigma$  module has a  $(\sigma, \tau)$ -connection.

#### Proof.

Let  $(M, \{(\tilde{\sigma}_a, \tilde{\tau})\}_{a \in I})$  be a  $\Sigma$ -module with M be a projective module. By proposition (9), there exist a projection  $p : \mathcal{A} \to \mathcal{A}$  such that

$$(p\mathcal{A}^n,\{(\hat{\sigma}_a,\hat{\tau}_a)\}_{a\in I})\simeq (M,\{(\tilde{\sigma}_a,\tilde{\tau}_a)\}_{a\in I}).$$

Every projective  $\Sigma$  module has a  $(\sigma, \tau)$ -connection.

#### Proof.

Let  $(M, \{(\tilde{\sigma}_a, \tilde{\tau})\}_{a \in I})$  be a  $\Sigma$ -module with M be a projective module. By proposition (9), there exist a projection  $p : \mathcal{A} \to \mathcal{A}$  such that

$$\left(p\mathcal{A}^n,\{(\hat{\sigma}_a,\hat{\tau}_a)\}_{a\in I}\right)\simeq \left(M,\{(\tilde{\sigma}_a,\tilde{\tau}_a)\}_{a\in I}\right).$$

Let  $\nabla$  be a  $(\sigma, \tau)$ -connection on  $(\mathcal{A}^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  and define  $\tilde{\nabla} = p \circ \nabla$ .



Every projective  $\Sigma$  module has a  $(\sigma, \tau)$ -connection.

#### Proof.

Let  $(M, \{(\tilde{\sigma}_a, \tilde{\tau})\}_{a \in I})$  be a  $\Sigma$ -module with M be a projective module. By proposition (9), there exist a projection  $p : A \to A$  such that

$$\left(p\mathcal{A}^n,\{(\hat{\sigma}_a,\hat{\tau}_a)\}_{a\in I}\right)\simeq \left(M,\{(\tilde{\sigma}_a,\tilde{\tau}_a)\}_{a\in I}\right).$$

Let  $\nabla$  be a  $(\sigma, \tau)$ -connection on  $(\mathcal{A}^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$  and define  $\tilde{\nabla} = p \circ \nabla$ . By proposition (12),  $\tilde{\nabla}$  is a  $(\sigma, \tau)$ -connection on  $(p\mathcal{A}^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I})$ .

Every projective  $\Sigma$  module has a  $(\sigma, \tau)$ -connection.

#### Proof.

Let  $(M, \{(\tilde{\sigma}_a, \tilde{\tau})\}_{a \in I})$  be a  $\Sigma$ -module with M be a projective module. By proposition (9), there exist a projection  $p : A \to A$  such that

$$(p\mathcal{A}^n, \{(\hat{\sigma}_a, \hat{\tau}_a)\}_{a \in I}) \simeq (M, \{(\tilde{\sigma}_a, \tilde{\tau}_a)\}_{a \in I}).$$

Let  $\nabla$  be a  $(\sigma,\tau)$ -connection on  $(\mathcal{A}^n,\{(\hat{\sigma}_a,\hat{\tau}_a)\}_{a\in I})$  and define  $\tilde{\nabla}=p\circ\nabla$ . By proposition (12),  $\tilde{\nabla}$  is a  $(\sigma,\tau)$ -connection on  $(p\mathcal{A}^n,\{(\hat{\sigma}_a,\hat{\tau}_a)\}_{a\in I})$ . By the isomorphism, it is clear that the projective  $\Sigma$ -module  $(M,\{(\tilde{\sigma}_a,\tilde{\tau})\}_{a\in I})$  has a  $(\sigma,\tau)$ -connection.



# outlook

We wouldlike to explore

• on  $(\sigma, \tau)$ -bimodule connection on Σ-bimodule,

# outlook

# We wouldlike to explore

- on  $(\sigma, \tau)$ -bimodule connection on Σ-bimodule,
- ▶ on  $(\sigma, \tau)$ -metric connection on  $\Sigma$ -bimodule.

# outlook

# We wouldlike to explore

- ▶ on  $(\sigma, \tau)$ -bimodule connection on  $\Sigma$ -bimodule,
- ▶ on  $(\sigma, \tau)$ -metric connection on  $\Sigma$ -bimodule.
- ▶ the general case of torsion and curvature since we have shown in [AIL20] that a Levi-Civita connection exists on  $S_a^3$ .

Thank you very much for your attention.