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Introduction

In the paper

[AIL20] On q-deformed Levi-Civita connections.

J. Arnlind, K. Ilwale, G. Landi. arXiv:2005.02603

we started from certain (σ, τ)-derivations on the quantum 3-sphere
A = S3

q , i.e. a linear maps X : A → A satisfying a Leibniz rule

X (fg) = σ(f )X (g) + X (f )τ(g)

for f , g ∈ A, and introduced a (σ, τ)-connection ∇, fulfilling a
corresponding twisted Leibniz rule

∇X (fm) = σ(f )∇X (m) + X (f )τ̂(m)

for f ∈ A and elements m in a (left) A-module M, where τ̂ is an
extension of τ to M (to be defined later).



Introduction

In the paper

[AIL20] On q-deformed Levi-Civita connections.

J. Arnlind, K. Ilwale, G. Landi. arXiv:2005.02603

we started from certain (σ, τ)-derivations on the quantum 3-sphere
A = S3

q , i.e. a linear maps X : A → A satisfying a Leibniz rule

X (fg) = σ(f )X (g) + X (f )τ(g)

for f , g ∈ A,

and introduced a (σ, τ)-connection ∇, fulfilling a
corresponding twisted Leibniz rule

∇X (fm) = σ(f )∇X (m) + X (f )τ̂(m)

for f ∈ A and elements m in a (left) A-module M, where τ̂ is an
extension of τ to M (to be defined later).



Introduction

In the paper

[AIL20] On q-deformed Levi-Civita connections.

J. Arnlind, K. Ilwale, G. Landi. arXiv:2005.02603

we started from certain (σ, τ)-derivations on the quantum 3-sphere
A = S3

q , i.e. a linear maps X : A → A satisfying a Leibniz rule

X (fg) = σ(f )X (g) + X (f )τ(g)

for f , g ∈ A, and introduced a (σ, τ)-connection ∇, fulfilling a
corresponding twisted Leibniz rule

∇X (fm) = σ(f )∇X (m) + X (f )τ̂(m)

for f ∈ A and elements m in a (left) A-module M, where τ̂ is an
extension of τ to M (to be defined later).



Introduction

Moreover, we introduced corresponding concepts of metric
compatibility and torsion-freeness of such a connection.

We proved that there exists a class of metric and torsion-free
connections (“Levi-Civita connections”) on the (standard) module
of differential forms over S3

q .

In this talk I will report on current work on extending these ideas
to general algebras and (σ, τ)-derivations.



I Let A be an associative algebra and σ, τ : A → A be algebra
endomorphisms.

I A derivation is a linear map X : A → A satisfying the Leibniz
rule

X (fg) = fX (g) + X (f )g

for f , g ∈ A.
I A (σ, τ)-derivation is a linear map X : A → A satisfying a

Leibniz rule

X (fg) = σ(f )X (g) + X (f )τ(g)

for f , g ∈ A.
I A (σ, τ)-derivation can be regarded as a twisted derivation

from which we can construct a twisted connection.
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I In this work, we would like to generalise the work in [AIL20]
by

I introducing a linear map Xa : A → A satisfying the Leibniz rule

Xa(fg) = σa(f )Xa(g) + Xa(f )τa(g)

for f , g ∈ A, and a ∈ I .
I constructing a connection ∇Xa : M → M satisfying a Leibniz

rule

∇Xa(fm) = σa(f )∇Xa(m) + Xa(f )τ̂a(m)

for a ∈ I , f ∈ A and m ∈ M where σa, τa, : A → A are algebra
endomorphisms and τ̂a : M → M is a map such that

τ̂a(fm) = τa(f )τ̂a(m)

I Finally, we would like to call such a connection a
(σ, τ)-connection and show that it exists on projective
modules.
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(σ, τ)-algebra

Definition 1
Let A be an associative algebra and let σ and τ be endomorphisms
of A. A C - linear map X : A → A is called a (σ, τ)-derivation if

X (fg) = σ(f )X (g) + X (f )τ(g)

for every f , g ∈ A.

Definition 2
A (σ, τ)-algebra Σ = (A, {Xa}a∈I ) is a pair where A is an
associative algebra (over C) and Xa is a (σa, τa)-derivation of A
for a ∈ I .

Definition 3
For a (σ, τ)-algebra Σ = (A, {Xa}a∈I ) we let

TΣ ⊆ HomC(A,A)

be the vector space generated by {Xa}a∈I . We call TΣ the
tangent space of Σ.
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Σ-module

Definition 4
Let Σ = (A, {Xa}a∈I ) be a (σ, τ)-algebra. A left Σ-module
(M, {(σ̂a, τ̂a)}a∈I ) is a left A-module M together with C-linear
maps σ̂a, τ̂a : M → M such that

σ̂a(fm) = σa(f )σ̂a(m)

τ̂a(fm) = τa(f )τ̂a(m)

for f ∈ A, m ∈ M and a ∈ I .

Definition 5
Let Σ = (A, {Xa}a∈I ) be a (σ, τ)-algebra and let
(M1, {(σ̂a, τ̂a)}a∈I ) and (M2, {(σ̃a, τ̃a)}a∈I ) be left Σ-modules. A
(σ, τ)-module homomorphism is an A-module homomorphism
φ : M1 → M2 such that

φ(σ̂a(m)) = σ̃a(φ(m)) φ(τ̂a(m)) = τ̃a(φ(m))

for m ∈ M1 and a ∈ I .
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Example 6

Let Σ = (A, {Xa}a∈I ) be a (σ, τ)-algebra and let An be a free
(left) A-module with a basis e1, . . . , en.
One can introduce a canonical Σ-module structure on An by
setting

σ̂0a(m) = σa(mi )ei , τ̂0a (m) = τa(mi )ei

for m = miei ∈ An.
One has

σ̂0a(fm) = σa(fmi )ei = σa(f )σa(mi )ei = σa(f )σ̂0a(m)

τ̂0a (fm) = τa(fmi )ei = τa(f )τa(mi )ei = τa(f )τ̂0a (m),

showing that (An, {(σ̂0a , τ̂0a )}a∈I ) is a (left) Σ-module.



Example 6

Let Σ = (A, {Xa}a∈I ) be a (σ, τ)-algebra and let An be a free
(left) A-module with a basis e1, . . . , en.

One can introduce a canonical Σ-module structure on An by
setting

σ̂0a(m) = σa(mi )ei , τ̂0a (m) = τa(mi )ei

for m = miei ∈ An.
One has

σ̂0a(fm) = σa(fmi )ei = σa(f )σa(mi )ei = σa(f )σ̂0a(m)

τ̂0a (fm) = τa(fmi )ei = τa(f )τa(mi )ei = τa(f )τ̂0a (m),

showing that (An, {(σ̂0a , τ̂0a )}a∈I ) is a (left) Σ-module.



Example 6

Let Σ = (A, {Xa}a∈I ) be a (σ, τ)-algebra and let An be a free
(left) A-module with a basis e1, . . . , en.
One can introduce a canonical Σ-module structure on An by
setting

σ̂0a(m) = σa(mi )ei , τ̂0a (m) = τa(mi )ei

for m = miei ∈ An.

One has

σ̂0a(fm) = σa(fmi )ei = σa(f )σa(mi )ei = σa(f )σ̂0a(m)

τ̂0a (fm) = τa(fmi )ei = τa(f )τa(mi )ei = τa(f )τ̂0a (m),

showing that (An, {(σ̂0a , τ̂0a )}a∈I ) is a (left) Σ-module.



Example 6

Let Σ = (A, {Xa}a∈I ) be a (σ, τ)-algebra and let An be a free
(left) A-module with a basis e1, . . . , en.
One can introduce a canonical Σ-module structure on An by
setting

σ̂0a(m) = σa(mi )ei , τ̂0a (m) = τa(mi )ei

for m = miei ∈ An.
One has

σ̂0a(fm) = σa(fmi )ei = σa(f )σa(mi )ei = σa(f )σ̂0a(m)

τ̂0a (fm) = τa(fmi )ei = τa(f )τa(mi )ei = τa(f )τ̂0a (m),

showing that (An, {(σ̂0a , τ̂0a )}a∈I ) is a (left) Σ-module.



Proposition 7

Let (M, {(σ̂a, τ̂a)}a∈I ) be a Σ-module and let T : M → M be a
(left) module homomorphism. Then (T (M), {(σ̃a, τ̃a)}a∈I ) is a
(left) Σ-module where σ̃a = T ◦ σ̂a and τ̃a = T ◦ τ̂a.

Example 8

Let p : An → An be a projection, implying that pAn is a (left)
projective A-module. Defining σ̃a, τ̃a : pAn → pAn by σ̃a = p ◦ σ̂0a
and τ̃a = p ◦ τ̂0a (restricted to pAn), where σ̂0a(m) = σa(mi )ei ,
τ̂0a (m) = τa(mi )ei , one finds that for m ∈ M and f ∈ A

σ̃a(fm) = p(σ̂0a(fm)) = σa(f )p(σ̂0a(m)) = σa(f )σ̃a(m)

τ̃a(fm) = p(τ̂0a (fm)) = τa(f )p(τ̂0a (m)) = τa(f )τ̃a(m),

showing that (pAn, {(σ̃a, τ̃a)}a∈I ) is a Σ-module. Hence, every
projective A-module can be endowed with the structure of a
Σ-module.
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Proposition 9

Let (M, {(σ̃a, τ̃a)}a∈I ) be a Σ-module such that M is a projective
A-module. Then there exists a projection p : An → An and
{σ̂a, τ̂a} such that

(pAn, {(σ̂a, τ̂a)}a∈I ) ' (M, {(σ̃a, τ̃a)}a∈I )

and furthermore, [σ̂a, p] = [τ̂a, p] = 0.
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Proof.
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projective module. Let φ̂ = φ|pAn : pAn → M be the restriction of
φ to pAn. One has
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showing that ψ(m) ∈ pAn and φ̂(ψ(m)) = m.
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= τa(f )ψ(τ̃a(φ̂(m))) = τa(f )τ̂a(m).

This shows that (pAn, {(σ̂a, τ̂a)}a∈I ) is a Σ-module. In fact one
has

φ̂ ◦ σ̂a = φ̂ ◦ ψ ◦ σ̃a ◦ φ̂ = σ̃a ◦ φ̂
φ̂ ◦ τ̂a = φ̂ ◦ ψ ◦ τ̃a ◦ φ̂ = τ̃a ◦ φ̂,

showing that φ̂ is a (σ, τ)- isomorphism.
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Proof.
Let ψ(m) ∈ pAn. Using φ̂ ◦ ψ = id, one computes

σ̂a ◦ p = ψ ◦ σ̃a ◦ φ̂ ◦ ψ ◦ φ̂ = ψ ◦ σ̃a ◦ φ̂.

and

p ◦ σ̂a = ψ ◦ φ̂ ◦ ψ ◦ σ̃a ◦ φ̂ = ψ ◦ σ̃a ◦ ψ

giving [σ̂a, p] = 0. In the similar way one can show that
[τ̂a, p] = 0.



(σ, τ)-connection

Definition 10
Let Σ = (A, {Xa}a∈I ) be a (σ, τ)-algebra and let
(M, {(σ̂a, τ̂a)}a∈I ) be a left Σ-module. A left (σ, τ)-connection on
M is a map ∇ : TΣ×M → M satisfying

∇X (m + m′) = ∇Xm +∇Xm
′

∇X (λm) = λ∇Xm

∇X+Ym = ∇Xm +∇Ym

∇λXm = λ∇Xm

∇Xa(fm) = σa(f )∇Xam + Xa(f )τ̂a(m)

for all X ,Y ∈ TΣ, m,m′ ∈ M, λ ∈ C and a ∈ I .



Example 11

Let Σ = (A, {Xa}a∈I ) be a (σ, τ)- algebra and (An, {(σ̂a, τ̂a)}a∈I )
be a free left Σ-module. Introduce a map ∇ : TΣ×An → An.
Choose ∇X ei arbitrarily and define

∇X (miei ) = σa(mi )∇X ei + X (mi )τ̂a(ei ).

For every X ,Y ∈ TΣ, one can easily see that

∇X (m + m′) = ∇X (m) +∇X (m′),

∇X+Y (m) = ∇X (m) +∇Y (m).

For derivations Xa ∈ TΣ, one finds that

∇Xa(fm) = σa(f )∇Xa(m) + Xa(f )τ̂a(m)

for m,m′ ∈ An and f ∈ A.
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Proposition 12

Let (M, {(σ̂a, τ̂a)}a∈I ) be a left Σ-module and let ∇ be a left
(σ, τ)-connection on (M, {(σ̂a, τ̂a)}a∈I ). If p : M → M is a
projection then ∇̃ = p ◦ ∇ is a left (σ, τ)-connection on
(p(M), {(p ◦ σ̂a, p ◦ τ̂a)}a∈I ).

Proof.
By the first Proposition (7), (p(M), {(p ◦ σ̂a, p ◦ τ̂a)}a∈I ) is a
Σ-module. Let f ∈ A,m,m′ ∈ M,Xa,X ,Y ∈ TΣ and define
∇̃ = p ◦ ∇. One has

∇̃Xa(fm) = p(∇Xa(fm))

= p(σa(f )∇Xam) + p(Xa(f )τ̂a(m))

= σa(f )p(∇Xam) + Xa(f )p(τ̂a(m))

= σa(f )∇̃Xam + Xa(f )p ◦ τ̂a(m).
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To show linearity of the connection on the projective module we
have

∇̃Xa(λm + m′) = p(λ∇Xa(m)) + p(∇Xa(m′))

= λ∇̃Xa(m) + ∇̃Xa(m′)

∇̃λX+Y (m) = λp(∇X (m)) + p(∇Y (m))

= λ∇̃Xm + ∇̃Ym.



To show linearity of the connection on the projective module we
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Theorem 13

Every projective Σ module has a (σ, τ)-connection.

Proof.
Let (M, {(σ̃a, τ̃)}a∈I ) be a Σ-module with M be a projective
module. By proposition (9), there exist a projection p : A → A
such that

(pAn, {(σ̂a, τ̂a)}a∈I ) ' (M, {(σ̃a, τ̃a)}a∈I ).

Let ∇ be a (σ, τ)-connection on (An, {(σ̂a, τ̂a)}a∈I ) and define
∇̃ = p ◦ ∇. By proposition (12), ∇̃ is a (σ, τ)-connection on
(pAn, {(σ̂a, τ̂a)}a∈I ). By the isomorphism, it is clear that the
projective Σ-module (M, {(σ̃a, τ̃)}a∈I ) has a (σ, τ)-connection.



Theorem 13
Every projective Σ module has a (σ, τ)-connection.

Proof.
Let (M, {(σ̃a, τ̃)}a∈I ) be a Σ-module with M be a projective
module. By proposition (9), there exist a projection p : A → A
such that

(pAn, {(σ̂a, τ̂a)}a∈I ) ' (M, {(σ̃a, τ̃a)}a∈I ).

Let ∇ be a (σ, τ)-connection on (An, {(σ̂a, τ̂a)}a∈I ) and define
∇̃ = p ◦ ∇. By proposition (12), ∇̃ is a (σ, τ)-connection on
(pAn, {(σ̂a, τ̂a)}a∈I ). By the isomorphism, it is clear that the
projective Σ-module (M, {(σ̃a, τ̃)}a∈I ) has a (σ, τ)-connection.



Theorem 13
Every projective Σ module has a (σ, τ)-connection.

Proof.

Let (M, {(σ̃a, τ̃)}a∈I ) be a Σ-module with M be a projective
module. By proposition (9), there exist a projection p : A → A
such that

(pAn, {(σ̂a, τ̂a)}a∈I ) ' (M, {(σ̃a, τ̃a)}a∈I ).

Let ∇ be a (σ, τ)-connection on (An, {(σ̂a, τ̂a)}a∈I ) and define
∇̃ = p ◦ ∇. By proposition (12), ∇̃ is a (σ, τ)-connection on
(pAn, {(σ̂a, τ̂a)}a∈I ). By the isomorphism, it is clear that the
projective Σ-module (M, {(σ̃a, τ̃)}a∈I ) has a (σ, τ)-connection.



Theorem 13
Every projective Σ module has a (σ, τ)-connection.

Proof.
Let (M, {(σ̃a, τ̃)}a∈I ) be a Σ-module with M be a projective
module.

By proposition (9), there exist a projection p : A → A
such that

(pAn, {(σ̂a, τ̂a)}a∈I ) ' (M, {(σ̃a, τ̃a)}a∈I ).

Let ∇ be a (σ, τ)-connection on (An, {(σ̂a, τ̂a)}a∈I ) and define
∇̃ = p ◦ ∇. By proposition (12), ∇̃ is a (σ, τ)-connection on
(pAn, {(σ̂a, τ̂a)}a∈I ). By the isomorphism, it is clear that the
projective Σ-module (M, {(σ̃a, τ̃)}a∈I ) has a (σ, τ)-connection.



Theorem 13
Every projective Σ module has a (σ, τ)-connection.

Proof.
Let (M, {(σ̃a, τ̃)}a∈I ) be a Σ-module with M be a projective
module. By proposition (9), there exist a projection p : A → A
such that

(pAn, {(σ̂a, τ̂a)}a∈I ) ' (M, {(σ̃a, τ̃a)}a∈I ).

Let ∇ be a (σ, τ)-connection on (An, {(σ̂a, τ̂a)}a∈I ) and define
∇̃ = p ◦ ∇. By proposition (12), ∇̃ is a (σ, τ)-connection on
(pAn, {(σ̂a, τ̂a)}a∈I ). By the isomorphism, it is clear that the
projective Σ-module (M, {(σ̃a, τ̃)}a∈I ) has a (σ, τ)-connection.



Theorem 13
Every projective Σ module has a (σ, τ)-connection.

Proof.
Let (M, {(σ̃a, τ̃)}a∈I ) be a Σ-module with M be a projective
module. By proposition (9), there exist a projection p : A → A
such that

(pAn, {(σ̂a, τ̂a)}a∈I ) ' (M, {(σ̃a, τ̃a)}a∈I ).

Let ∇ be a (σ, τ)-connection on (An, {(σ̂a, τ̂a)}a∈I ) and define
∇̃ = p ◦ ∇.

By proposition (12), ∇̃ is a (σ, τ)-connection on
(pAn, {(σ̂a, τ̂a)}a∈I ). By the isomorphism, it is clear that the
projective Σ-module (M, {(σ̃a, τ̃)}a∈I ) has a (σ, τ)-connection.



Theorem 13
Every projective Σ module has a (σ, τ)-connection.

Proof.
Let (M, {(σ̃a, τ̃)}a∈I ) be a Σ-module with M be a projective
module. By proposition (9), there exist a projection p : A → A
such that

(pAn, {(σ̂a, τ̂a)}a∈I ) ' (M, {(σ̃a, τ̃a)}a∈I ).

Let ∇ be a (σ, τ)-connection on (An, {(σ̂a, τ̂a)}a∈I ) and define
∇̃ = p ◦ ∇. By proposition (12), ∇̃ is a (σ, τ)-connection on
(pAn, {(σ̂a, τ̂a)}a∈I ).

By the isomorphism, it is clear that the
projective Σ-module (M, {(σ̃a, τ̃)}a∈I ) has a (σ, τ)-connection.



Theorem 13
Every projective Σ module has a (σ, τ)-connection.

Proof.
Let (M, {(σ̃a, τ̃)}a∈I ) be a Σ-module with M be a projective
module. By proposition (9), there exist a projection p : A → A
such that

(pAn, {(σ̂a, τ̂a)}a∈I ) ' (M, {(σ̃a, τ̃a)}a∈I ).

Let ∇ be a (σ, τ)-connection on (An, {(σ̂a, τ̂a)}a∈I ) and define
∇̃ = p ◦ ∇. By proposition (12), ∇̃ is a (σ, τ)-connection on
(pAn, {(σ̂a, τ̂a)}a∈I ). By the isomorphism, it is clear that the
projective Σ-module (M, {(σ̃a, τ̃)}a∈I ) has a (σ, τ)-connection.



outlook

We wouldlike to explore

I on (σ, τ)-bimodule connection on Σ-bimodule,

I on (σ, τ)−metric connection on Σ-bimodule.

I the general case of torsion and curvature since we have shown
in [AIL20] that a Levi-Civita connection exists on S3
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Thank you very much for your attention.
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