Pseudo-Riemannian Real Calculi	Real Calculus Homomorphisms	General Results	Minimal Embeddings	Future Research

Minimal Embeddings in a Noncommutative Context

Axel Tiger Norkvist

Department of Mathematics, Linköping University

October 18, 2019

Pseudo-Riemannian Real Calculi	Real Calculus Homomorphisms	General Results 00	Minimal Embeddings	Future Research 00
Overview				

- 2 Real Calculus Homomorphisms
- 3 General Results
- 4 Minimal Embeddings

Pseudo-Riemannian Real Calculi ●00	Real Calculus Homomorphisms	General Results 00	Minimal Embeddings	Future Research 00
Real Calculi De	finition			

A real calculus is a structure $\mathcal{C}_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, \mathcal{M}, arphi)$, where

- \mathcal{A} is a unital *-algebra,
- $\mathfrak{g} \subseteq \mathsf{Der}(\mathcal{A})$ is a real Lie algebra of derivations on \mathcal{A} ,
- *M* is a (right) *A*-module, and

• $\varphi : \mathfrak{g} \to M$ is a \mathbb{R} -linear map such that $\varphi(\mathfrak{g})$ generates M.

Initial example: Let $\boldsymbol{\Sigma}$ be a smooth manifold. With

•
$$\mathcal{A} = \mathcal{C}^{\infty}(\Sigma)$$
,

- $\mathfrak{g} = \mathsf{Der}(\mathcal{C}^\infty(\Sigma))$,
- $M = \mathfrak{X}(\Sigma)$ (the module of smooth vector fields over Σ), and
- $\varphi =$ the natural isomorphism between smooth vector fields and derivations,

we have that $\mathcal{C}_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, M, \varphi)$ is a real calculus.

Pseudo-Riemannian Real Calculi 0●0	Real Calculus Homomorphisms	General Results 00	Minimal Embeddings	Future Research 00
Metrics				

Let $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, M, \varphi)$ be a real calculus. A *metric* $h: M \times M \to \mathcal{A}$ is a Hermitian form that is non-degenerate, i.e. • $h(m_1 + m_2, n) = h(m_1, n) + h(m_2, n)$ for all $m_1, m_2, n \in M$, • $h(m, n \cdot a) = h(m, n)a$ for all $m, n \in M$, $a \in \mathcal{A}$, • $h(m, n) = h(n, m)^*$ for all $m, n \in M$, and • h(m, n) = 0 for all $n \in M \Rightarrow m = 0$.

Moreover, if $h(\varphi(\partial_1), \varphi(\partial_2)) = h(\varphi(\partial_1), \varphi(\partial_2))^*$ for all $\partial_1, \partial_2 \in \mathfrak{g}$ (i.e., it is truly symmetric on $\varphi(\mathfrak{g})$) then $(\mathcal{C}_{\mathcal{A}}, h)$ is called a real metric calculus.

Pseudo-Riemannian Real Calculi 00●	Real Calculus Homomorphisms	General Results 00	Minimal Embeddings	Future Research 00
Connections				

Let $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, M, \varphi)$ be a real calculus. An affine connection $\nabla : \mathfrak{g} \times M \to M$ is a map that satisfies

•
$$\nabla_{\partial}(m+n) = \nabla_{\partial}m + \nabla_{\partial}n$$
 for all $m, n \in M$ and $\partial \in \mathfrak{g}$,

•
$$\nabla_{\lambda\partial_1+\partial_2}m = \lambda \nabla_{\partial_1}m + \nabla_{\partial_2}m$$
 for all $m \in M$, $\lambda \in \mathbb{R}$ and $\partial_1, \partial_2 \in \mathfrak{g}$, and

•
$$\nabla_{\partial}(m \cdot a) = (\nabla_{\partial}m) \cdot a + m \cdot \partial(a)$$
 for all $m \in M$, $\partial \in \mathfrak{g}$ and $a \in \mathcal{A}$.

With a metric, define a notion of a metric and torsion-free connection ∇ to satisfy the following:

$$\begin{array}{ll} \text{Metric:} & \partial(h(m,n)) = h(\nabla_{\partial}m,n) + h(m,\nabla_{\partial}n)\nabla_{\partial_i}, \\ \text{Torsion-free:} & \nabla_{\partial_i}\varphi(\partial_j) - \nabla_{\partial_j}\varphi(\partial_i) - \varphi([\partial_i,\partial_j]) = 0. \end{array}$$

If ∇ is metric and torsion-free, we say that (C_A, h, ∇) is pseudo-Riemannian.

Pseudo-Riemannian Real Calculi	Real Calculus Homomorphisms	General Results	Minimal Embeddings	Future Research
000	●00	00		00
Real Calculus H	lomomorphisms			

Let
$$C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, \mathcal{M}, \varphi)$$
 and $C_{\mathcal{A}'} = (\mathcal{A}', \mathfrak{g}', \mathcal{M}', \varphi')$ be two real calculi. $(\phi, \psi, \hat{\psi})$ is said to be a real calculus homomorphism from $C_{\mathcal{A}}$ to $C_{\mathcal{A}'}$ if the following conditions are satisfied:

②
$$\psi : \mathfrak{g}' \to \mathfrak{g}$$
 is a Lie homomorphism such that
 $\delta(\phi(a)) = \phi(\psi(\delta)(a))$ for all $\delta \in \mathfrak{g}'$ and $a \in \mathcal{A}$.

- So M_{Ψ} is the submodule of M generated by $\varphi(\psi(\mathfrak{g}'))$, and $\hat{\psi}: M_{\Psi} \to M'$ is a map that satisfies
 - $\hat{\psi}(m_1+m_2) = \hat{\psi}(m_1) + \hat{\psi}(m_2)$ for all $m_1, m_2 \in M_\Psi$,
 - $\hat{\psi}(m \cdot a) = \hat{\psi}(m) \cdot \phi(a)$ for all $m \in M_{\Psi}$ and $a \in \mathcal{A}$, and
 - $\hat{\psi}(\varphi(\psi(\delta))) = \varphi'(\delta)$ for all $\delta \in \mathfrak{g}'$.

Illustration of a Real Calculus Homomorphism

A schematic picture illustrating the real calculus homomorphism $(\phi, \psi, \hat{\psi}) : C_A \to C_{A'}$:

Pseudo-Riemannian Real Calculi	Real Calculus Homomorphisms 00●	General Results 00	Minimal Embeddings	Future Research
Embeddings of	Real Calculi			

A real calculus homomorphism $(\phi, \psi, \hat{\psi}) : C_{\mathcal{A}} \to C_{\mathcal{A}'}$ is called an embedding of $C_{\mathcal{A}'}$ into $C_{\mathcal{A}}$ if ϕ is surjective and there is a submodule \tilde{M} of M such that $M = M_{\Psi} \oplus \tilde{M}$.

Moreover, if $(C_{\mathcal{A}}, h)$ and $(C_{\mathcal{A}'}, h')$ are real metric calculi such that $h'(\hat{\psi}(m), \hat{\psi}(n)) = \phi(h(m, n))$ for all $m, n \in M_{\Psi}$ and $M = M_{\Psi} \oplus M_{\Psi}^{\perp}$ (w.r.t h), then we say that $(C_{\mathcal{A}'}, h)$ is isometrically embedded into $(C_{\mathcal{A}}, h)$ by $(\phi, \psi, \hat{\psi})$.

Let $(C_{\mathcal{A}}, h, \nabla)$ and $(C_{\mathcal{A}'}, h', \nabla')$ be pseudo-Riemannian calculi such that $(\phi, \psi, \hat{\psi}) : C_{\mathcal{A}} \to C_{\mathcal{A}'}$ is an isometric embedding of $(C_{\mathcal{A}'}, h')$ into $(C_{\mathcal{A}}, h)$.

Let $m \in M_{\Psi}$ and let $\xi \in M_{\Psi}^{\perp}$. One may split ∇ into tangential and normal parts in the following way:

 $abla_{\psi(\delta)}m = L(\delta, m) + \alpha(\delta, m) \quad (Gauss' \text{ formula})$ $abla_{\psi(\delta)}\xi = -A_{\xi}(\delta) + D_{\delta}\xi \quad (Weingarten's \text{ formula});$

 $\alpha: \mathfrak{g}' \times M_{\Psi} \to M_{\Psi}^{\perp}$ is called the second fundamental form, and $A: \mathfrak{g}' \times M_{\Psi}^{\perp} \to M_{\Psi}$ is called the Weingarten map.

Pseudo-Riemannian Real Calculi 000	Real Calculus Homomorphisms	General Results 0●	Minimal Embeddings	Future Research 00
General results				

- Proposition: *L* is the Levi-Civita connection for the embedded calculus.
- α and A behave like their classical counterparts:

$$\begin{aligned} &\alpha(\delta_1, \Psi(\delta_2)) = \alpha(\delta_2, \Psi(\delta_1)), \\ &\alpha(\lambda_1\delta_1 + \lambda_1\delta_2, m) = \lambda_1\alpha(\delta_1, m) + \lambda_2\alpha(\delta_2, m) \\ &\alpha(\delta, m_1a_1 + m_2a_2) = \alpha(\delta_1, m_1)a_1 + \alpha(\delta_1, m_2)a_2, \end{aligned}$$

and $h(A_{\xi}(\delta), m) = h(\xi, \alpha(\delta, m)).$

• Gauss' formula for the curvature of an embedding can be formulated and proven in the context of pseudo-Riemannian calculi:

$$\phi(h(E_1, R(\partial_3, \partial_4)E_2)) = h'(E'_1, R'(\delta_3, \delta_4)E'_2) + \phi(h(\alpha(\delta_4, E_1), \alpha(\delta_3, E_2))) - \phi(h(\alpha(\delta_3, E_1), \alpha(\delta_4, E_2)))$$

Pseudo-Riemannian Real Calculi 000	Real Calculus Homomorphisms	General Results 00	Minimal Embeddings ●000	Future Research
Free real calculi				

To study minimality of an embedding, we restrict our attention to so-called free real calculi. A real calculus $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, M, \varphi)$ is said to be free if M is free, and there is a basis $\{\partial_1, ..., \partial_k\}$ of \mathfrak{g} that generates a basis $\{\varphi(\partial_1), ..., \varphi(\partial_k)\}$ of M.

Moreover, if (C_A, h) is a real metric calculus such that C_A is free and the metric h is invertible, then (C_A, h) is said to be a free real metric calculus.

- Far from all real metric calculi are also free, but one gains structure to work with in return.
- For a free real metric calculus (C_A, h), there is always a unique connection ∇ such that (C_A, h, ∇) is pseudo-Riemannian.

Mean curvature and minimality of an embedding

Let $(C_{\mathcal{A}}, h, \nabla)$ and $(C_{\mathcal{A}'}, h', \nabla')$ be pseudo-Riemannian real calculi such that $(C_{\mathcal{A}}, h)$ and $(C_{\mathcal{A}'}, h')$ are free, and let $(\phi, \psi, \hat{\psi}) : C_{\mathcal{A}} \to C_{\mathcal{A}'}$ be an isometric embedding of $(C_{\mathcal{A}'}, h')$ into $(C_{\mathcal{A}}, h)$.

For a basis $\{\delta_1, ..., \delta_k\}$ of \mathfrak{g}' , define the mean curvature $H_{\mathcal{A}'}: M \to \mathcal{A}'$ as:

$$H_{\mathcal{A}'}(m) = \phi(h(m, \alpha(\delta_j, \Psi(\delta_j))))(h')^{ij}, \quad m \in M.$$

- The value of $H_{\mathcal{A}'}(m)$ is independent of the choice of basis $\{\delta_1,...,\delta_k\}$ for all $m \in M$,
- $H_{\mathcal{A}'}(m)=0$ for all $m\in M_{\Psi}$,
- We say that an embedding is minimal if the mean curvature is zero, i.e. H_{A'}(m) = 0 for all m ∈ M[⊥]_Ψ.

Pseudo-Riemannian Real Calculi Real Calculus Homomorphisms General Results Minimal Embeddings Future Research oo The noncommutative torus and the noncommutative 3-sphere

• T_{θ}^2 : The noncommutative torus is the *-algebra with unital generators U, V satisfying the relation VU = qUV, where $q = e^{2\pi i\theta}$; Choose derivations δ_1, δ_2 given by:

$\delta_1(U) = iU$	$\delta_2(U)=0$
$\delta_1(V) = 0$	$\delta_2(V)=iV.$

We have that $[\delta_1, \delta_2] = 0$.

• S^3_{θ} : The noncommutative 3-sphere is the unital *-algebra with generators Z, Z^*, W, W^* subject to the relations

$$\begin{split} & WZ = qZW & W^*Z = \bar{q}ZW^* & WZ^* = \bar{q}Z^*W \\ & W^*Z^* = qZ^*W^* & Z^*Z = ZZ^* & W^*W = WW^* \\ & WW^* = \mathbb{1} - ZZ^*, \end{split}$$

Choose derivations $\partial_1, \partial_2, \partial_3$ of S^3_{θ} , given by:

$$\begin{aligned} \partial_1(Z) &= iZ, & \partial_2(Z) &= 0, & \partial_3(Z) &= Z|W|^2 \\ \partial_1(W) &= 0 & \partial_2(W) &= iW & \partial_3(W) &= -W|Z|^2, \end{aligned}$$

where $|Z|^2 := ZZ^*$ and $|W|^2 := WW^*$. We have that $[\partial_i, \partial_j] = 0$ for all i, j = 1, 2, 3.

An embedding of T_{θ}^2 into S_{θ}^3 is achieved by the *-homomorphism $\phi: S_{\theta}^3 \to T_{\theta}^2$ given by $\phi(Z) = \lambda U$ and $\phi(W) = \mu W$, where λ and μ are nonzero complex constants such that $|\lambda|^2 + |\mu|^2 = 1$. Embedding is minimal for the standard metric if $|\lambda| = |\mu| = 1/\sqrt{2}$.

Pseudo-Riemannian Real Calculi 000	Real Calculus Homomorphisms	General Results 00	Minimal Embeddings	Future Research ●0
Future research				

- Future work on minimal embeddings involves trying to develop a more general definition of mean curvature dealing with cases where a module is, for instance, projective.
- More generally regarding real calculus homomorphisms, future work involves developing a better understanding of when two real calculi are isomorphic, and our current research is centered around classifying real calculi for finite noncommutative spaces.

Pseudo-Riemannian Real Calculi	Real Calculus Homomorphisms	General Results	Minimal Embeddings	Future Research
				0•

The End