Graded von Neumann regular rings

Daniel Lännström

Blekinge Institute of Technology PhD Student. Supervisors: Johan Öinert (BTH), Stefan Wagner (BTH), Patrik Nystedt (HV)

2nd SNAG, BTH, Karlskrona

- Graded von Neumann regular rings (Năstăsescu, Oystaeyen, 1982)
- early epsilon-strongly graded rings (Nystedt, Öinert, 2018)

- Graded von Neumann regular rings (Năstăsescu, Oystaeyen, 1982)
- nearly epsilon-strongly graded rings (Nystedt, Öinert, 2018)

 $\{ \mathsf{Graded \ von \ Neumann \ regular \ rings} \} \subsetneq \{ \mathsf{nearly \ epsilon-strongly \ graded \ rings} \}$

Daniel Lännström, A characterization of graded von Neumann regular rings with applications to Leavitt path algebras, In preparation.

Preliminaries

2 A characterization of graded von Neumann regular rings

3 Application to Leavitt path algebras

Von Neumann regular rings

Definition (Von Neumann, 1936)

A unital ring R is called *von Neumann regular* if for each $a \in R$ there is some $x \in R$ such that a = axa.

Generalizes to non-unital rings in an obvious manner.

Von Neumann regular rings

Definition (Von Neumann, 1936)

A unital ring R is called *von Neumann regular* if for each $a \in R$ there is some $x \in R$ such that a = axa.

Generalizes to non-unital rings in an obvious manner.

Definition

A ring *R* is called *s*-unital if $x \in Rx \cap xR$ for every $x \in R$.

Von Neumann regular rings

Definition (Von Neumann, 1936)

A unital ring R is called *von Neumann regular* if for each $a \in R$ there is some $x \in R$ such that a = axa.

Generalizes to non-unital rings in an obvious manner.

Definition

A ring R is called *s*-unital if $x \in Rx \cap xR$ for every $x \in R$.

Proposition

Let R be an s-unital ring. The following are equivalent:

- **1** *R* is von Neumann regular
- every finitely generated left (right) ideal is generated by an idempotent

Definition

Let G be a group and let S be a ring. A grading of S is a collection of additive subsets of S, $\{S_g\}_{g\in G}$, such that

$$S = \bigoplus_{g \in G} S_g$$

and $S_g S_h \subseteq S_{gh}$ for all $g, h \in G$. The ring S is called a *G*-graded ring.

Definition

Let G be a group and let S be a ring. A grading of S is a collection of additive subsets of S, $\{S_g\}_{g\in G}$, such that

$$S = \bigoplus_{g \in G} S_g$$

and $S_g S_h \subseteq S_{gh}$ for all $g, h \in G$. The ring S is called a G-graded ring.

Definition

• S_e is called the *principal component*.

Definition

Let G be a group and let S be a ring. A grading of S is a collection of additive subsets of S, $\{S_g\}_{g\in G}$, such that

$$S = \bigoplus_{g \in G} S_g$$

and $S_g S_h \subseteq S_{gh}$ for all $g, h \in G$. The ring S is called a G-graded ring.

Definition

- S_e is called the *principal component*.
- **2** The elements $\bigcup_{g \in G} S_g$ are called the *homogeneous elements* of *S*.

Definition

Let G be a group and let S be a ring. A grading of S is a collection of additive subsets of S, $\{S_g\}_{g\in G}$, such that

$$S = \bigoplus_{g \in G} S_g$$

and $S_g S_h \subseteq S_{gh}$ for all $g, h \in G$. The ring S is called a G-graded ring.

Definition

- S_e is called the *principal component*.
- **2** The elements $\bigcup_{g \in G} S_g$ are called the *homogeneous elements* of *S*.
- An ideal I of S is called graded if $I = \bigoplus_{g \in G} (I \cap S_g)$.

Graded rings: Examples I

Example

The Laurent polynomial ring is \mathbb{Z} -graded by,

$$R[x, x^{-1}] = \bigoplus_{i \in \mathbb{Z}} Rx^i.$$

Graded rings: Examples I

Example

The Laurent polynomial ring is \mathbb{Z} -graded by,

$$R[x, x^{-1}] = \bigoplus_{i \in \mathbb{Z}} Rx^i.$$

Principal component: $(R[x, x^{-1}])_0 = R$.

Graded rings: Examples I

Example

The Laurent polynomial ring is \mathbb{Z} -graded by,

$$R[x, x^{-1}] = \bigoplus_{i \in \mathbb{Z}} Rx^i.$$

Principal component:
$$(R[x, x^{-1}])_0 = R$$
.

Example

(The group ring) Let G be a group and let R be a unital ring. The group ring $R[G] = \bigoplus_{g \in G} R\delta_g$ is naturally G-graded. Principal component: R

Definition (Năstăsescu, Oystaeyen, 1982 [2])

Let $S = \bigoplus_{g \in G} S_g$ be a *G*-graded ring. If, for each $g \in G$ and every $a \in S_g$, there is some $x \in S$ such that a = axa, then *S* is called *graded von Neumann regular*.

Definition (Năstăsescu, Oystaeyen, 1982 [2])

Let $S = \bigoplus_{g \in G} S_g$ be a *G*-graded ring. If, for each $g \in G$ and every $a \in S_g$, there is some $x \in S$ such that a = axa, then *S* is called *graded von Neumann regular*.

Proposition (Hazrat, 2014)

Let S be a G-graded ring with homogeneous local units. Then the following are equivalent:

- S is graded von Neumann regular
- Any finitely generated right (left) graded ideal of S is generated by a homogeneous idempotent.

Graded von Neumann regular rings and strongly graded rings

Definition

A G-grading $S = \bigoplus_{g \in G} S_g$ is called *strong* if $S_g S_h = S_{gh}$ for all $g, h \in G$.

Theorem (Năstăsescu, Oystaeyen, 1982 [2])

Let $S = \bigoplus_{g \in G} S_g$ be a unital strongly *G*-graded ring. Then *S* is graded von Neumann regular if and only if S_e is von Neumann regular.

Graded von Neumann regular rings and strongly graded rings

Definition

A G-grading $S = \bigoplus_{g \in G} S_g$ is called *strong* if $S_g S_h = S_{gh}$ for all $g, h \in G$.

Theorem (Năstăsescu, Oystaeyen, 1982 [2])

Let $S = \bigoplus_{g \in G} S_g$ be a unital strongly *G*-graded ring. Then *S* is graded von Neumann regular if and only if S_e is von Neumann regular.

Example

Let R be a von Neumann regular ring. Then the group ring R[G] and the Laurent polynomial ring $R[x, x^{-1}]$ are graded von Neumann regular.

Examples of epsilon-strongly graded rings:

- unital partial crossed products (Nystedt, Öinert, Pinedo, 2016 [3]),
- Leavitt path algebras of finite graphs (Nystedt, Öinert, 2017),
- Scorner skew Laurent polynomial rings (Lännström, 2019).

Examples of epsilon-strongly graded rings:

- unital partial crossed products (Nystedt, Öinert, Pinedo, 2016 [3]),
- Leavitt path algebras of finite graphs (Nystedt, Öinert, 2017),
- orner skew Laurent polynomial rings (Lännström, 2019).

Definition (Nystedt, Öinert, 2018)

Let S be a G-graded ring. If, for every $g \in G$ and $s \in S_g$ there exist some $\epsilon_g(s) \in S_g S_{g^{-1}}, \epsilon_g(s)' \in S_{g^{-1}} S_g$ such that $\epsilon_g(s)s = s = s\epsilon_g(s)'$, then S is called *nearly epsilon-strongly G-graded*.

1 Preliminaries

2 A characterization of graded von Neumann regular rings

Proposition

Let $S = \bigoplus_{g \in G} S_g$ be a graded von Neumann regular ring. Then S_e is von Neumann regular.

Proposition

Let $S = \bigoplus_{g \in G} S_g$ be a graded von Neumann regular ring. Then S_e is von Neumann regular.

Proposition (Lännström, 2019)

Let $S = \bigoplus_{g \in G} S_g$ be a graded von Neumann regular ring. Then S is nearly epsilon-strongly G-graded.

Proposition

Let $S = \bigoplus_{g \in G} S_g$ be a graded von Neumann regular ring. Then S_e is von Neumann regular.

Proposition (Lännström, 2019)

Let $S = \bigoplus_{g \in G} S_g$ be a graded von Neumann regular ring. Then S is nearly epsilon-strongly G-graded.

Proof

Take $g \in G$ and $s \in S_g$. We need to find some $\epsilon_g(s) \in S_g S_{g^{-1}}$ and $\epsilon_g(s)' \in S_{g^{-1}} S_g$ such that $\epsilon_g(s)s = s = \epsilon_g(s)'s$.

Proposition

Let $S = \bigoplus_{g \in G} S_g$ be a graded von Neumann regular ring. Then S_e is von Neumann regular.

Proposition (Lännström, 2019)

Let $S = \bigoplus_{g \in G} S_g$ be a graded von Neumann regular ring. Then S is nearly epsilon-strongly G-graded.

Proof

Take $g \in G$ and $s \in S_g$. We need to find some $\epsilon_g(s) \in S_g S_{g^{-1}}$ and $\epsilon_g(s)' \in S_{g^{-1}} S_g$ such that $\epsilon_g(s)s = s = \epsilon_g(s)'s$. Since S is graded von Neumann regular, there is some $b \in S_{g^{-1}}$ such that s = sbs. Take $\epsilon_g(s) := sb$ and $\epsilon_g(s)' = bs$.

Necessary conditions are also sufficient! (cf. Yahya, 1997)

Necessary conditions are also sufficient! (cf. Yahya, 1997)

Theorem (Lännström, 2019)

Let $S = \bigoplus_{g \in G} S_g$ be a *G*-graded ring. Then *S* is graded von Neumann regular if and only if *S* is nearly epsilon-strongly *G*-graded and S_e is von Neumann regular.

Necessary conditions are also sufficient! (cf. Yahya, 1997)

Theorem (Lännström, 2019)

Let $S = \bigoplus_{g \in G} S_g$ be a *G*-graded ring. Then *S* is graded von Neumann regular if and only if *S* is nearly epsilon-strongly *G*-graded and S_e is von Neumann regular.

Remark

Generalizes Năstăsescu, Oystaeyen theorem for unital strongly graded rings!

Necessary conditions are also sufficient! (cf. Yahya, 1997)

Theorem (Lännström, 2019)

Let $S = \bigoplus_{g \in G} S_g$ be a *G*-graded ring. Then *S* is graded von Neumann regular if and only if *S* is nearly epsilon-strongly *G*-graded and S_e is von Neumann regular.

Remark

Generalizes Năstăsescu, Oystaeyen theorem for unital strongly graded rings!

Acknowledgement

I am grateful to Öinert for providing part of the proof.

1 Preliminaries

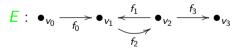
2 A characterization of graded von Neumann regular rings

Input to the construction:

• *R* be a unital ring (possibly non-commutative)

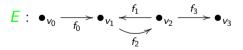
Input to the construction:

- R be a unital ring (possibly non-commutative)
- \bigcirc *E* be a directed graph. E.g.:



Input to the construction:

- R be a unital ring (possibly non-commutative)
- \bigcirc *E* be a directed graph. E.g.:



The Leavitt path algebra $L_R(E)$ is a \mathbb{Z} -graded *R*-algebra.

 Coefficients in a field (original construction), coefficients in a commutative unital ring (Tomforde, 2009), coefficients in a unital ring (Hazrat, 2013)

- Coefficients in a field (original construction), coefficients in a commutative unital ring (Tomforde, 2009), coefficients in a unital ring (Hazrat, 2013)
- **②** Surprising results for $L_{\mathbb{Z}}$ (Johansen and Sørensen, 2016)

- Coefficients in a field (original construction), coefficients in a commutative unital ring (Tomforde, 2009), coefficients in a unital ring (Hazrat, 2013)
- **②** Surprising results for $L_{\mathbb{Z}}$ (Johansen and Sørensen, 2016)

Research question

How does algebraic properties of R effect the algebraic properties of $L_R(E)$?

Leavitt path algebras: Examples I

Example

$$A_1: \bullet_v$$

In this case, $L_R(A_1) \cong Rv \cong R$.

Leavitt path algebras: Examples I

Example

$$A_1: \bullet_v$$

In this case, $L_R(A_1) \cong Rv \cong R$.

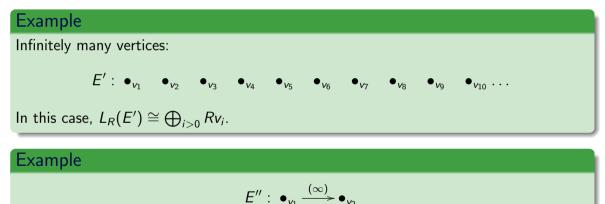
Example

$$E_1:$$
 \bullet_v

In this case, $L_R(E_1) \cong_{\phi} R[x, x^{-1}]$ via the map defined by $\phi(v) = 1_R, \phi(f) = x, \phi(f^*) = x^{-1}$.

Leavitt path algebras: Examples II

The previous graphs have all been finite, but we also allow infinite graphs!



Leavitt path algebras over fields are graded von Neumann regular

Theorem (Hazrat, 2014 [1])

Let K be a field and let E be a directed graph. Then $L_{\mathcal{K}}(E)$ is graded von Neumann regular.

Theorem (Hazrat, 2014 [1])

Let K be a field and let E be a directed graph. Then $L_{K}(E)$ is graded von Neumann regular.

Example

Let R be a unital ring that is not von Neumann regular.

$$A_1: \bullet_v$$

It can be shown that $L_R(E) \cong_{\text{gr}} R$ is graded von Neumann regular if and only if R is von Neumann regular. Hence, $L_R(E)$ is not graded von Neumann regular.

Leavitt path algebras with coefficients in a general unital ring

Main goal of this project:

Theorem (Lännström, 2019)

Let R be a unital ring and let E be a directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Leavitt path algebras with coefficients in a general unital ring

Main goal of this project:

Theorem (Lännström, 2019)

Let R be a unital ring and let E be a directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Proof idea:

R von Neumann regular $\rightsquigarrow L_R(E)_0$ is von Neumann regular $\rightsquigarrow L_R(E)$ graded von Neumann regular.

Leavitt path algebras with coefficients in a general unital ring

Main goal of this project:

Theorem (Lännström, 2019)

Let R be a unital ring and let E be a directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Proof idea:

R von Neumann regular $\rightsquigarrow L_R(E)_0$ is von Neumann regular $\rightsquigarrow L_R(E)$ graded von Neumann regular.

Proposition (Nystedt, Öinert, 2018)

Let R be a unital ring. If E is a directed graph, then $L_R(E)$ is nearly epsilon-strongly \mathbb{Z} -graded. If E is a finite directed graph, then $L_R(E)$ is epsilon-strongly \mathbb{Z} -graded.

- $\textcircled{0} \ \mathbb{C} \text{ is von Neumann regular}$
- 2 \mathbb{Z} is not von Neumann regular

- ${ \bullet \hspace{-.8em} \bullet \hspace{-.8em} } \mathbb{C} \hspace{0.5em} \text{is von Neumann regular}$
- **2** \mathbb{Z} is not von Neumann regular
- By Theorem, for any graph E,
 - $L_{\mathbb{C}}(E)$ is graded von Neumann regular
 - $L_{\mathbb{Z}}(E)$ is not graded von Neumann regular

Lemma (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $(L_R(E))_0$ is von Neumann regular if and only if R is von Neumann regular.

Lemma (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $(L_R(E))_0$ is von Neumann regular if and only if R is von Neumann regular.

Corollary (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Lemma (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $(L_R(E))_0$ is von Neumann regular if and only if R is von Neumann regular.

Corollary (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Proof.

 $L_R(E)$ is epsilon-strongly \mathbb{Z} -graded (Nystedt, Öinert, 2017).

Lemma (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $(L_R(E))_0$ is von Neumann regular if and only if R is von Neumann regular.

Corollary (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Proof.

 $L_R(E)$ is epsilon-strongly \mathbb{Z} -graded (Nystedt, Öinert, 2017).

 $L_R(E)$ is graded von Neumann regular if and only if $(L_R(E)_0)$ is von Neumann regular.

Lemma (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $(L_R(E))_0$ is von Neumann regular if and only if R is von Neumann regular.

Corollary (Lännström, 2019)

Let R be a unital ring and let E be a finite directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Proof.

 $L_R(E)$ is epsilon-strongly \mathbb{Z} -graded (Nystedt, Öinert, 2017). $L_R(E)$ is graded von Neumann regular if and only if $(L_R(E)_0 \text{ is von Neumann regular.}$ By Lemma, $(L_R(E))_0$ is von Neumann regular if and only if R is von Neumann regular. Technical reduction step: Let E be any graph. Then $L_R(E)$ is the direct limit of Leavitt path algebras of finite graphs.

Technical reduction step: Let E be any graph. Then $L_R(E)$ is the direct limit of Leavitt path algebras of finite graphs.

Theorem (Lännström, 2019)

Let R be a unital ring and let E be any (possibly non-finite) directed graph. Then $L_R(E)$ is graded von Neumann regular if and only if R is von Neumann regular.

Corollary (Lännström, 2019)

Let R be a unital ring and let E be a directed graph. If R is von Neumann regular, then $L_R(E)$ is semiprimitive and semiprime.

Proof.

Assume that R is von Neumann regular. By Theorem, $L_R(E)$ is graded von Neumann regular.

Corollary (Lännström, 2019)

Let R be a unital ring and let E be a directed graph. If R is von Neumann regular, then $L_R(E)$ is semiprimitive and semiprime.

Proof.

Assume that R is von Neumann regular. By Theorem, $L_R(E)$ is graded von Neumann regular. Since $L_R(E)$ is \mathbb{Z} -graded with local units, $J(L_R(E))$ is a graded idea. (Bergman's theorem).

Corollary (Lännström, 2019)

Let R be a unital ring and let E be a directed graph. If R is von Neumann regular, then $L_R(E)$ is semiprimitive and semiprime.

Proof.

Assume that R is von Neumann regular. By Theorem, $L_R(E)$ is graded von Neumann regular.

Since $L_R(E)$ is \mathbb{Z} -graded with local units, $J(L_R(E))$ is a graded idea. (Bergman's theorem).

Using the properties of graded von Neumann regular rings, J = 0 and, moreover, $L_R(E)$ is semiprime.

- R. Hazrat. "Leavitt path algebras are graded von Neumann regular rings". In: Journal of Algebra 401 (2014), pp. 220–233.
- C. Năstăsescu and F. van Oystaeyen. "Graded ring theory, Math". In: *Library (28), North-Holland, Amsterdam* (1982).
- P. Nystedt, J. Öinert, and H. Pinedo. "Epsilon-strongly graded rings, separability and semisimplicity". In: *Journal of Algebra* 514 (2018), pp. 1–24. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2018.08.002.

Thank you for your attention!