Formal hom-associative deformations of Ore extensions

The 2nd meeting of the Swedish Network for Algebra and Geometry, Blekinge Institute of Technology, 2019

Per Bäck, <per.back@mdh.se> MÄLARDALEN UNIVERSITY, SWEDEN

October 18, 2019

Hom-associative algebras – algebras with the associativity condition twisted by a *hom*omorphism – arose with hom-Lie algebras, introduced by Hartwig, Larsson, and Silvestrov [HLS06].

Non-commutative polynomial rings – or *Ore extensions* – were introduced by Ore Ore33, and generalized to non-associative such by Nystedt, Öinert, and Richter [NÖR18].

Naïve idea – why not hom-associative Ore extensions?

[HLS06] J.T. Hartwig, D. Larsson, and S.D. Silvestrov. "Deformations of Lie algebras using σ -derivations". In: J. Algebra 295.2 (2006). [NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". In: Isr. J. Math. 224.1 (2018).

Hom-associative algebras – algebras with the associativity condition twisted by a *hom*omorphism – arose with hom-Lie algebras, introduced by Hartwig, Larsson, and Silvestrov [HLS06].

Non-commutative polynomial rings – or *Ore extensions* – were introduced by Ore Ore33, and generalized to non-associative such by Nystedt, Öinert, and Richter [NÖR18].

Naïve idea – why not hom-associative Ore extensions?

[HLS06] J.T. Hartwig, D. Larsson, and S.D. Silvestrov. "Deformations of Lie algebras using σ -derivations". In: J. Algebra 295.2 (2006). [NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". In: Isr. J. Math. 224.1 (2018).

Hom-associative algebras – algebras with the associativity condition twisted by a *hom*omorphism – arose with hom-Lie algebras, introduced by Hartwig, Larsson, and Silvestrov [HLS06].

Non-commutative polynomial rings – or Ore extensions – were introduced by Ore [Ore33], and generalized to non-associative such by Nystedt, Öinert, and Richter [NÖR18].

Naïve idea – why not hom-associative Ore extensions?

[HLS06] J.T. Hartwig, D. Larsson, and S.D. Silvestrov. "Deformations of Lie algebras using σ -derivations". In: J. Algebra 295.2 (2006).

[Ore33] O. Ore. "Theory of Non-Commutative Polynomials". In: Ann. Math. 34.3 (1933).

[NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". In: *Isr. J. Math.* 224.1 (2018).

Hom-associative algebras – algebras with the associativity condition twisted by a *hom*omorphism – arose with hom-Lie algebras, introduced by Hartwig, Larsson, and Silvestrov [HLS06].

Non-commutative polynomial rings – or Ore extensions – were introduced by Ore [Ore33], and generalized to non-associative such by Nystedt, Öinert, and Richter [NÖR18].

Naïve idea – why not hom-associative Ore extensions?

[[]HLS06] J.T. Hartwig, D. Larsson, and S.D. Silvestrov. "Deformations of Lie algebras using σ -derivations". In: J. Algebra 295.2 (2006).

[[]Ore33] O. Ore. "Theory of Non-Commutative Polynomials". In: Ann. Math. 34.3 (1933).

[[]NÖR18] P. Nystedt, J. Öinert, and J. Richter. "Non-associative Ore extensions". In: *Isr. J. Math.* 224.1 (2018).

Definition (Hom-everything)

A hom-associative algebra over an associative, commutative, and unital ring R, is a triple (M, \cdot, α) consisting of an R-module M, a binary operation $: M \times M \to M$ linear over R in both arguments, and an R-linear map $\alpha: M \to M$, satisfying, for all $a, b, c \in M$,

$$\alpha(a)\cdot(b\cdot c)=(a\cdot b)\cdot\alpha(c).$$

A hom-associative ring is a hom-associative algebra over \mathbb{Z} .

A map $f: A \to B$ between hom-associative algebras is a homomorphism if it is linear, multiplicative, and $f \circ \alpha_A = \alpha_B \circ f$.

Definition (Hom-everything)

A hom-associative algebra over an associative, commutative, and unital ring R, is a triple (M, \cdot, α) consisting of an R-module M, a binary operation $: M \times M \to M$ linear over R in both arguments, and an R-linear map $\alpha: M \to M$, satisfying, for all $a, b, c \in M$,

$$\alpha(a)\cdot(b\cdot c)=(a\cdot b)\cdot\alpha(c).$$

A hom-associative ring is a hom-associative algebra over \mathbb{Z} .

A map $f: A \to B$ between hom-associative algebras is a homomorphism if it is linear, multiplicative, and $f \circ \alpha_A = \alpha_B \circ f$.

Definition (Hom-everything)

A hom-associative algebra over an associative, commutative, and unital ring R, is a triple (M, \cdot, α) consisting of an R-module M, a binary operation $: M \times M \to M$ linear over R in both arguments, and an R-linear map $\alpha: M \to M$, satisfying, for all $a, b, c \in M$,

$$\alpha(a)\cdot(b\cdot c)=(a\cdot b)\cdot\alpha(c).$$

A hom-associative ring is a hom-associative algebra over \mathbb{Z} .

A map $f: A \to B$ between hom-associative algebras is a homomorphism if it is linear, multiplicative, and $f \circ \alpha_A = \alpha_B \circ f$.

Definition (Hom-everything)

A hom-associative algebra over an associative, commutative, and unital ring R, is a triple (M, \cdot, α) consisting of an R-module M, a binary operation $: M \times M \to M$ linear over R in both arguments, and an R-linear map $\alpha: M \to M$, satisfying, for all $a, b, c \in M$,

$$\alpha(a)\cdot(b\cdot c)=(a\cdot b)\cdot\alpha(c).$$

A hom-associative ring is a hom-associative algebra over \mathbb{Z} .

A map $f: A \to B$ between hom-associative algebras is a homomorphism if it is linear, multiplicative, and $f \circ \alpha_A = \alpha_B \circ f$.

Definition (Hom-everything)

A hom-associative algebra over an associative, commutative, and unital ring R, is a triple (M, \cdot, α) consisting of an R-module M, a binary operation $: M \times M \to M$ linear over R in both arguments, and an R-linear map $\alpha: M \to M$, satisfying, for all $a, b, c \in M$,

$$\alpha(a)\cdot(b\cdot c)=(a\cdot b)\cdot\alpha(c).$$

A hom-associative ring is a hom-associative algebra over \mathbb{Z} .

A map $f: A \to B$ between hom-associative algebras is a homomorphism if it is linear, multiplicative, and $f \circ \alpha_A = \alpha_B \circ f$.

A hom-associative algebra A is called *weakly unital* with *weak* unit $e \in A$ if for all $a \in A$, $e \cdot a = a \cdot e = \alpha(a)$.

Proposition ([BRS18])

Any multiplicative hom-associative R-algebra (M, \cdot, α) can be embedded into a multiplicative, weakly unital hom-associative algebra $(M \oplus R, \bullet, \beta_{\alpha})$. For any $m_1, m_2 \in M$, $r_1, r_2 \in R$,

 $(m_1, r_1) \bullet (m_2, r_2) \coloneqq (m_1 \cdot m_2 + r_1 \alpha(m_2) + r_2 \alpha(m_1), r_1 r_2),$ $\beta_{\alpha}(m_1, r_1) \coloneqq (\alpha(m_1), r_1).$

Proposition ([BRS18]) $(M, \cdot, \alpha) \cong (M \oplus 0, \bullet, \beta_{\alpha})$ is a hom-ideal in $(M \oplus R, \bullet, \beta_{\alpha})$.

A hom-associative algebra A is called *weakly unital* with *weak* unit $e \in A$ if for all $a \in A$, $e \cdot a = a \cdot e = \alpha(a)$.

Proposition ([BRS18])

Any multiplicative hom-associative R-algebra (M, \cdot, α) can be embedded into a multiplicative, weakly unital hom-associative algebra $(M \oplus R, \bullet, \beta_{\alpha})$. For any $m_1, m_2 \in M, r_1, r_2 \in R$,

 $(m_1, r_1) \bullet (m_2, r_2) \coloneqq (m_1 \cdot m_2 + r_1 \alpha(m_2) + r_2 \alpha(m_1), r_1 r_2), \\ \beta_\alpha(m_1, r_1) \coloneqq (\alpha(m_1), r_1).$

Proposition ([BRS18]) $(M, \cdot, \alpha) \cong (M \oplus 0, \bullet, \beta_{\alpha})$ is a hom-ideal in $(M \oplus R, \bullet, \beta_{\alpha})$.

A hom-associative algebra A is called *weakly unital* with *weak* unit $e \in A$ if for all $a \in A$, $e \cdot a = a \cdot e = \alpha(a)$.

Proposition ([BRS18])

Any multiplicative hom-associative R-algebra (M, \cdot, α) can be embedded into a multiplicative, weakly unital hom-associative algebra $(M \oplus R, \bullet, \beta_{\alpha})$. For any $m_1, m_2 \in M$, $r_1, r_2 \in R$,

 $(m_1, r_1) \bullet (m_2, r_2) \coloneqq (m_1 \cdot m_2 + r_1 \alpha(m_2) + r_2 \alpha(m_1), r_1 r_2), \\ \beta_\alpha(m_1, r_1) \coloneqq (\alpha(m_1), r_1).$

Proposition ([BRS18]) $(M, \cdot, \alpha) \cong (M \oplus 0, \bullet, \beta_{\alpha})$ is a hom-ideal in $(M \oplus R, \bullet, \beta_{\alpha})$.

A hom-associative algebra A is called *weakly unital* with *weak* unit $e \in A$ if for all $a \in A$, $e \cdot a = a \cdot e = \alpha(a)$.

Proposition ([BRS18])

Any multiplicative hom-associative R-algebra (M, \cdot, α) can be embedded into a multiplicative, weakly unital hom-associative algebra $(M \oplus R, \bullet, \beta_{\alpha})$. For any $m_1, m_2 \in M, r_1, r_2 \in R$,

$$(m_1, r_1) \bullet (m_2, r_2) \coloneqq (m_1 \cdot m_2 + r_1 \alpha(m_2) + r_2 \alpha(m_1), r_1 r_2),$$

 $\beta_{\alpha}(m_1, r_1) \coloneqq (\alpha(m_1), r_1).$

Proposition ([BRS18]) $(M, \cdot, \alpha) \cong (M \oplus 0, \bullet, \beta_{\alpha})$ is a hom-ideal in $(M \oplus R, \bullet, \beta_{\alpha})$.

A hom-associative algebra A is called *weakly unital* with *weak* unit $e \in A$ if for all $a \in A$, $e \cdot a = a \cdot e = \alpha(a)$.

Proposition ([BRS18])

Any multiplicative hom-associative R-algebra (M, \cdot, α) can be embedded into a multiplicative, weakly unital hom-associative algebra $(M \oplus R, \bullet, \beta_{\alpha})$. For any $m_1, m_2 \in M, r_1, r_2 \in R$,

$$(m_1, r_1) \bullet (m_2, r_2) \coloneqq (m_1 \cdot m_2 + r_1 \alpha(m_2) + r_2 \alpha(m_1), r_1 r_2),$$

 $\beta_{\alpha}(m_1, r_1) \coloneqq (\alpha(m_1), r_1).$

Proposition ([BRS18]) $(M, \cdot, \alpha) \cong (M \oplus 0, \bullet, \beta_{\alpha})$ is a hom-ideal in $(M \oplus R, \bullet, \beta_{\alpha})$.

[[]BRS18] P. Bäck, J. Richter, and S. Silvestrov. "Hom-associative Ore extensions and weak unitalizations". In: *Int. Electron. J. Algebra* 24 (2018).

Proposition ([Yau09])

Let A be a unital, associative algebra with unit 1_A , α an algebra endomorphism on A, and define $*: A \times A \rightarrow A$ for all $a, b \in A$ by

 $a \star b \coloneqq \alpha(a \cdot b)$

Then $(A, *, \alpha)$ is a weakly unital hom-associative algebra with weak unit 1_A .

[Yau09] D. Yau. "Hom-algebras and Homology". In: J. Lie Theory 19.2 (2009).

Proposition ([Yau09])

Let A be a unital, associative algebra with unit 1_A , α an algebra endomorphism on A, and define $*: A \times A \rightarrow A$ for all $a, b \in A$ by

$$a \star b \coloneqq \alpha(a \cdot b)$$

Then $(A, *, \alpha)$ is a weakly unital hom-associative algebra with weak unit 1_A .

[[]Yau09] D. Yau. "Hom-algebras and Homology". In: J. Lie Theory 19.2 (2009).

Hom-Lie Algebras: Preliminaries

Definition (Hom-Lie algebra)

A hom-Lie algebra over an associative, commutative, and unital ring R is a triple $(M, [\cdot, \cdot], \alpha)$ where M is an R-module, $\alpha: M \to M$ a linear map called the *twisting map*, and $[\cdot, \cdot]: M \times M \to M$ a bilinear and alternative map called the hom-Lie bracket, satisfying for all $a, b, c \in M$:

$$\left[\alpha(a), [b, c]\right] + \left[\alpha(c), [a, b]\right] + \left[\alpha(b), [c, a]\right] = 0.$$

Proposition ([MS08])

Let (M, \cdot, α) be a hom-associative algebra with commutator $[\cdot, \cdot]$. Then $(M, [\cdot, \cdot], \alpha)$ is a hom-Lie algebra.

[MS08] A. Makhlouf and S.D. Silvestrov. "Hom-algebra structures". In: J. Gen. Lie Theory Appl. 2.2 (2008).

Hom-Lie Algebras: Preliminaries

Definition (Hom-Lie algebra)

A hom-Lie algebra over an associative, commutative, and unital ring R is a triple $(M, [\cdot, \cdot], \alpha)$ where M is an R-module, $\alpha: M \to M$ a linear map called the *twisting map*, and $[\cdot, \cdot]: M \times M \to M$ a bilinear and alternative map called the hom-Lie bracket, satisfying for all $a, b, c \in M$:

$$\left[\alpha(a), [b,c]\right] + \left[\alpha(c), [a,b]\right] + \left[\alpha(b), [c,a]\right] = 0.$$

Proposition ([MS08])

Let (M, \cdot, α) be a hom-associative algebra with commutator $[\cdot, \cdot]$. Then $(M, [\cdot, \cdot], \alpha)$ is a hom-Lie algebra.

[MS08] A. Makhlouf and S.D. Silvestrov. "Hom-algebra structures". In: J. Gen. Lie Theory Appl. 2.2 (2008).

Hom-Lie Algebras: Preliminaries

Definition (Hom-Lie algebra)

A hom-Lie algebra over an associative, commutative, and unital ring R is a triple $(M, [\cdot, \cdot], \alpha)$ where M is an R-module, $\alpha: M \to M$ a linear map called the *twisting map*, and $[\cdot, \cdot]: M \times M \to M$ a bilinear and alternative map called the hom-Lie bracket, satisfying for all $a, b, c \in M$:

$$\left[\alpha(a), [b,c]\right] + \left[\alpha(c), [a,b]\right] + \left[\alpha(b), [c,a]\right] = 0.$$

Proposition ([MS08])

Let (M, \cdot, α) be a hom-associative algebra with commutator $[\cdot, \cdot]$. Then $(M, [\cdot, \cdot], \alpha)$ is a hom-Lie algebra.

[[]MS08] A. Makhlouf and S.D. Silvestrov. "Hom-algebra structures". In: J. Gen. Lie Theory Appl. 2.2 (2008).

Definition (Left *R*-additivity)

If R is a non-associative, non-unital ring, a map $\beta \colon R \to R$ is left *R*-additive if for all $r, s, t \in R, r \cdot \beta(s+t) = r \cdot (\beta(s) + \beta(t))$.

If $\delta: R \to R$ and $\sigma: R \to R$ are left *R*-additive maps, by a *non-associative, non-unital Ore extension* of *R*, *R*[*x*; σ, δ], we mean $\{\sum_{i \in \mathbb{N}} a_i x^i\}$, finitely many $a_i \in R$ non-zero, endowed with the addition

$$\sum_{i \in \mathbb{N}} a_i x^i + \sum_{i \in \mathbb{N}} b_i x^i \coloneqq \sum_{i \in \mathbb{N}} (a_i + b_i) x^i, \quad a_i, b_i \in R,$$

two polynomials being equal iff their coefficients are, $\forall a, b \in R$,

$$ax^m \cdot bx^n \coloneqq \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^m(b) \right) x^{i+n}.$$

Definition (Left *R*-additivity)

If R is a non-associative, non-unital ring, a map $\beta: R \to R$ is *left* R-additive if for all $r, s, t \in R, r \cdot \beta(s+t) = r \cdot (\beta(s) + \beta(t))$.

If $\delta: R \to R$ and $\sigma: R \to R$ are left *R*-additive maps, by a *non-associative, non-unital Ore extension* of *R*, *R*[*x*; σ, δ], we mean $\{\sum_{i \in \mathbb{N}} a_i x^i\}$, finitely many $a_i \in R$ non-zero, endowed with the addition

$$\sum_{i \in \mathbb{N}} a_i x^i + \sum_{i \in \mathbb{N}} b_i x^i \coloneqq \sum_{i \in \mathbb{N}} (a_i + b_i) x^i, \quad a_i, b_i \in R,$$

two polynomials being equal iff their coefficients are, $\forall a, b \in R$,

$$ax^m \cdot bx^n \coloneqq \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^m(b) \right) x^{i+n}.$$

Definition (Left *R*-additivity)

If R is a non-associative, non-unital ring, a map $\beta: R \to R$ is *left* R-additive if for all $r, s, t \in R, r \cdot \beta(s+t) = r \cdot (\beta(s) + \beta(t))$.

If $\delta: R \to R$ and $\sigma: R \to R$ are left *R*-additive maps, by a *non-associative, non-unital Ore extension* of *R*, $R[x;\sigma,\delta]$, we mean $\{\sum_{i\in\mathbb{N}} a_i x^i\}$, finitely many $a_i \in R$ non-zero, endowed with the addition

$$\sum_{i \in \mathbb{N}} a_i x^i + \sum_{i \in \mathbb{N}} b_i x^i \coloneqq \sum_{i \in \mathbb{N}} (a_i + b_i) x^i, \quad a_i, b_i \in R,$$

two polynomials being equal iff their coefficients are, $\forall a, b \in R$,

$$ax^m \cdot bx^n \coloneqq \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^m(b) \right) x^{i+n}.$$

Definition (Left *R*-additivity)

If R is a non-associative, non-unital ring, a map $\beta: R \to R$ is *left* R-additive if for all $r, s, t \in R, r \cdot \beta(s+t) = r \cdot (\beta(s) + \beta(t))$.

If $\delta: R \to R$ and $\sigma: R \to R$ are left *R*-additive maps, by a *non-associative, non-unital Ore extension* of *R*, $R[x;\sigma,\delta]$, we mean $\{\sum_{i\in\mathbb{N}}a_ix^i\}$, finitely many $a_i \in R$ non-zero, endowed with the addition

$$\sum_{i \in \mathbb{N}} a_i x^i + \sum_{i \in \mathbb{N}} b_i x^i \coloneqq \sum_{i \in \mathbb{N}} (a_i + b_i) x^i, \quad a_i, b_i \in R,$$

two polynomials being equal iff their coefficients are, $\forall a, b \in R$,

$$ax^{m} \cdot bx^{n} \coloneqq \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{m}(b) \right) x^{i+n}$$

Definition (Left *R*-additivity)

If R is a non-associative, non-unital ring, a map $\beta: R \to R$ is *left* R-additive if for all $r, s, t \in R, r \cdot \beta(s+t) = r \cdot (\beta(s) + \beta(t))$.

If $\delta: R \to R$ and $\sigma: R \to R$ are left *R*-additive maps, by a *non-associative, non-unital Ore extension* of *R*, $R[x;\sigma,\delta]$, we mean $\{\sum_{i\in\mathbb{N}}a_ix^i\}$, finitely many $a_i \in R$ non-zero, endowed with the addition

$$\sum_{i \in \mathbb{N}} a_i x^i + \sum_{i \in \mathbb{N}} b_i x^i \coloneqq \sum_{i \in \mathbb{N}} (a_i + b_i) x^i, \quad a_i, b_i \in R,$$

two polynomials being equal iff their coefficients are, $\forall a, b \in R$,

$$ax^m \cdot bx^n \coloneqq \sum_{i \in \mathbb{N}} \left(a \cdot \pi_i^m(b) \right) x^{i+n}$$

$$ax^{0} \cdot bx^{0} = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+0} = (a \cdot b)x^{0}, \text{ so } R \cong Rx^{0},$$
$$a \cdot bx = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+1} = (a \cdot b)x,$$
$$ax \cdot b = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{1}(b) \right) x^{i+0} = \left(a \cdot \sigma(b) \right) x + a \cdot \delta(b).$$

Definition (σ -derivation)

$$ax^{0} \cdot bx^{0} = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+0} = (a \cdot b)x^{0}, \text{ so } R \cong Rx^{0},$$
$$a \cdot bx = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+1} = (a \cdot b)x,$$
$$ax \cdot b = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{1}(b) \right) x^{i+0} = \left(a \cdot \sigma(b) \right) x + a \cdot \delta(b).$$

Definition (σ -derivation)

$$ax^{0} \cdot bx^{0} = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+0} = (a \cdot b)x^{0}, \text{ so } R \cong Rx^{0},$$
$$a \cdot bx = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+1} = (a \cdot b)x,$$
$$ax \cdot b = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{1}(b) \right) x^{i+0} = \left(a \cdot \sigma(b) \right) x + a \cdot \delta(b).$$

Definition (σ -derivation)

$$ax^{0} \cdot bx^{0} = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+0} = (a \cdot b)x^{0}, \text{ so } R \cong Rx^{0},$$
$$a \cdot bx = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+1} = (a \cdot b)x,$$
$$ax \cdot b = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{1}(b) \right) x^{i+0} = \left(a \cdot \sigma(b) \right) x + a \cdot \delta(b).$$

Definition (σ -derivation)

$$ax^{0} \cdot bx^{0} = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+0} = (a \cdot b)x^{0}, \text{ so } R \cong Rx^{0},$$
$$a \cdot bx = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+1} = (a \cdot b)x,$$
$$ax \cdot b = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{1}(b) \right) x^{i+0} = \left(a \cdot \sigma(b) \right) x + a \cdot \delta(b).$$

Definition (σ -derivation)

A map $\delta: R \to R$ is a σ -derivation if $\delta(a \cdot b) = \delta(a) \cdot b + \sigma(a) \cdot \delta(b)$, $a, b \in R, \sigma$ an endomorphism. If $\sigma = id_R, \delta$ is a derivation. If $\alpha: R \to R$ is any map, we may extend it homogeneously to

 $R[x;\sigma,\delta]$ by $\alpha(ax^m) \coloneqq \alpha(a)x^m$.

$$ax^{0} \cdot bx^{0} = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+0} = (a \cdot b)x^{0}, \text{ so } R \cong Rx^{0},$$
$$a \cdot bx = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{0}(b) \right) x^{i+1} = (a \cdot b)x,$$
$$ax \cdot b = \sum_{i \in \mathbb{N}} \left(a \cdot \pi_{i}^{1}(b) \right) x^{i+0} = \left(a \cdot \sigma(b) \right) x + a \cdot \delta(b).$$

Definition (σ -derivation)

Hom-assoc. Ore extensions: Necessity

Proposition ([BRS18])

Let $R[x; \sigma, \delta]$ be a non-unital, hom-associative Ore extension of a non-unital, hom-associativ ring R with twisting map $\alpha: R \to R$, extended homogeneously to $R[x; \sigma, \delta]$. Then, for all $a, b, c \in R$,

> $(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)),$ $(a \cdot b) \cdot \sigma(\alpha(c)) = (a \cdot b) \cdot \alpha(\sigma(c)),$ $\alpha(a) \cdot \sigma(b \cdot c) = \alpha(a) \cdot (\sigma(b) \cdot \sigma(c)),$ $\alpha(a) \cdot \delta(b \cdot c) = \alpha(a) \cdot (\delta(b) \cdot c + \sigma(b)\delta(c))$

Hom-assoc. Ore extensions: Necessity

Proposition ([BRS18])

Let $R[x;\sigma,\delta]$ be a non-unital, hom-associative Ore extension of a non-unital, hom-associativ ring R with twisting map $\alpha: R \to R$, extended homogeneously to $R[x;\sigma,\delta]$. Then, for all $a, b, c \in R$,

> $(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)),$ $(a \cdot b) \cdot \sigma(\alpha(c)) = (a \cdot b) \cdot \alpha(\sigma(c)),$ $\alpha(a) \cdot \sigma(b \cdot c) = \alpha(a) \cdot (\sigma(b) \cdot \sigma(c)),$ $\alpha(a) \cdot \delta(b \cdot c) = \alpha(a) \cdot (\delta(b) \cdot c + \sigma(b)\delta(c))$

Proposition ([BRS18])

Let $R[x;\sigma,\delta]$ be a non-unital, hom-associative Ore extension of a non-unital, hom-associativ ring R with twisting map $\alpha: R \to R$, extended homogeneously to $R[x;\sigma,\delta]$. Then, for all $a, b, c \in R$,

> $(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)),$ $(a \cdot b) \cdot \sigma(\alpha(c)) = (a \cdot b) \cdot \alpha(\sigma(c)),$ $\alpha(a) \cdot \sigma(b \cdot c) = \alpha(a) \cdot (\sigma(b) \cdot \sigma(c)),$ $\alpha(a) \cdot \delta(b \cdot c) = \alpha(a) \cdot (\delta(b) \cdot c + \sigma(b)\delta(c))$

Proposition ([BRS18])

Let $R[x;\sigma,\delta]$ be a non-unital, hom-associative Ore extension of a non-unital, hom-associativ ring R with twisting map $\alpha: R \to R$, extended homogeneously to $R[x;\sigma,\delta]$. Then, for all $a, b, c \in R$,

> $(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)),$ $(a \cdot b) \cdot \sigma(\alpha(c)) = (a \cdot b) \cdot \alpha(\sigma(c)),$ $\alpha(a) \cdot \sigma(b \cdot c) = \alpha(a) \cdot (\sigma(b) \cdot \sigma(c)),$ $\alpha(a) \cdot \delta(b \cdot c) = \alpha(a) \cdot (\delta(b) \cdot c + \sigma(b)\delta(c)).$

Proposition ([BRS18])

Let $R[x; \sigma, \delta]$ be a non-unital, hom-associative Ore extension of a non-unital, hom-associativ ring R with twisting map $\alpha: R \to R$, extended homogeneously to $R[x; \sigma, \delta]$. Then, for all $a, b, c \in R$,

$$(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)),$$

$$(a \cdot b) \cdot \sigma(\alpha(c)) = (a \cdot b) \cdot \alpha(\sigma(c)),$$

$$\alpha(a) \cdot \sigma(b \cdot c) = \alpha(a) \cdot (\sigma(b) \cdot \sigma(c)),$$

$$\alpha(a) \cdot \delta(b \cdot c) = \alpha(a) \cdot (\delta(b) \cdot c + \sigma(b)\delta(c))$$

Let $R[x;\sigma,\delta]$ be a non-unital, hom-associative Ore extension of a non-unital, hom-associativ ring R with twisting map $\alpha: R \to R$, extended homogeneously to $R[x;\sigma,\delta]$. Then, for all $a, b, c \in R$,

$$(a \cdot b) \cdot \delta(\alpha(c)) = (a \cdot b) \cdot \alpha(\delta(c)),$$

$$(a \cdot b) \cdot \sigma(\alpha(c)) = (a \cdot b) \cdot \alpha(\sigma(c)),$$

$$\alpha(a) \cdot \sigma(b \cdot c) = \alpha(a) \cdot (\sigma(b) \cdot \sigma(c)),$$

$$\alpha(a) \cdot \delta(b \cdot c) = \alpha(a) \cdot (\delta(b) \cdot c + \sigma(b)\delta(c)).$$

Proposition ([BRS18])

Assume α is the twisting map of a non-unital, hom-associative ring R, and extend the map homogeneously to $R[X;\sigma,\delta]$. Assume α commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. Then $R[X;\sigma,\delta]$ is hom-associative.

Proposition ([BRS18])

Let $R[x;\sigma,\delta]$ be a non-unital, associative Ore extension of a non-unital, associative ring R, where σ is an endomorphism and δ a σ -derivation. Assume α is a ring endomorphism that commutes with σ and δ . Then $(R[x;\sigma,\delta],*,\alpha)$ is a multiplicative, non-unital, hom-associative Ore extension with α extended homogeneously to $R[x;\sigma,\delta]$.

Proposition ([BRS18])

Assume α is the twisting map of a non-unital, hom-associative ring R, and extend the map homogeneously to $R[X;\sigma,\delta]$.

Assume α commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. Then $R[X;\sigma,\delta]$ is hom-associative.

Proposition ([BRS18])

Let $R[x; \sigma, \delta]$ be a non-unital, associative Ore extension of a non-unital, associative ring R, where σ is an endomorphism and δ a σ -derivation. Assume α is a ring endomorphism that commutes with σ and δ . Then $(R[x; \sigma, \delta], *, \alpha)$ is a multiplicative, non-unital, hom-associative Ore extension with α extended homogeneously to $R[x; \sigma, \delta]$.

Proposition ([BRS18])

Assume α is the twisting map of a non-unital, hom-associative ring R, and extend the map homogeneously to $R[X;\sigma,\delta]$. Assume α commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. Then $R[X;\sigma,\delta]$ is hom-associative.

Proposition ([BRS18])

Let $R[x; \sigma, \delta]$ be a non-unital, associative Ore extension of a non-unital, associative ring R, where σ is an endomorphism and δ a σ -derivation. Assume α is a ring endomorphism that commutes with σ and δ . Then $(R[x; \sigma, \delta], *, \alpha)$ is a multiplicative, non-unital, hom-associative Ore extension with α extended homogeneously to $R[x; \sigma, \delta]$.

Proposition ([BRS18])

Assume α is the twisting map of a non-unital, hom-associative ring R, and extend the map homogeneously to $R[X;\sigma,\delta]$. Assume α commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. Then $R[X;\sigma,\delta]$ is hom-associative.

Proposition ([BRS18])

Let $R[x; \sigma, \delta]$ be a non-unital, associative Ore extension of a non-unital, associative ring R, where σ is an endomorphism and δ a σ -derivation. Assume α is a ring endomorphism that commutes with σ and δ . Then $(R[x; \sigma, \delta], \star, \alpha)$ is a multiplicative, non-unital, hom-associative Ore extension with α extended homogeneously to $R[x; \sigma, \delta]$.

Proposition ([BRS18])

Assume α is the twisting map of a non-unital, hom-associative ring R, and extend the map homogeneously to $R[X;\sigma,\delta]$. Assume α commutes with δ and σ , and that σ is an endomorphism and δ a σ -derivation. Then $R[X;\sigma,\delta]$ is hom-associative.

Proposition ([BRS18])

Let $R[x;\sigma,\delta]$ be a non-unital, associative Ore extension of a non-unital, associative ring R, where σ is an endomorphism and δ a σ -derivation. Assume α is a ring endomorphism that commutes with σ and δ . Then $(R[x;\sigma,\delta], \star, \alpha)$ is a multiplicative, non-unital, hom-associative Ore extension with α extended homogeneously to $R[x;\sigma,\delta]$.

Hom-assoc. Ore extensions: Examples

K a field, char(K) = 0.

Example

The (associative) quantum plane $\mathcal{O}_q(K^2)$ is $K\langle x, y \rangle / (x \cdot y - qy \cdot x), q \in K^{\times}$. $\mathcal{O}_q(K^2) \cong K[y][x; \sigma_q, 0_{K[y]}]$ where $\sigma_q(y) \coloneqq qy$.

The hom-associative quantum planes $\mathcal{O}_q^k(K^2)$ are $(\mathcal{O}_q(K^2), *, \alpha_k)$ where, $\alpha_k(y) \coloneqq ky$, and $\alpha_k(x) \coloneqq x$ for $k \in K^{\times}$. Here, x * y = kqy * x while $x * (y * y) - (x * y) * y = (k-1)k^3q^2y^2x$.

Example

U(L) the universal enveloping algebra of the two-dimensional, non-abelian Lie algebra L defined by [x, y] = y. $U(L) \cong K[y][x; \mathrm{id}_{K[y]}, y\mathrm{d/d}y].$

Example

The (associative) quantum plane $\mathcal{O}_q(K^2)$ is $K\langle x, y \rangle / (x \cdot y - qy \cdot x), q \in K^{\times}$. $\mathcal{O}_q(K^2) \cong K[y][x; \sigma_q, 0_{K[y]}]$ where $\sigma_q(y) \coloneqq qy$.

The hom-associative quantum planes $\mathcal{O}_q^k(K^2)$ are $(\mathcal{O}_q(K^2), *, \alpha_k)$ where, $\alpha_k(y) \coloneqq ky$, and $\alpha_k(x) \coloneqq x$ for $k \in K^{\times}$. Here, x * y = kqy * x while $x * (y * y) - (x * y) * y = (k-1)k^3q^2y^2x$.

Example

U(L) the universal enveloping algebra of the two-dimensional, non-abelian Lie algebra L defined by [x, y] = y. $U(L) \cong K[y][x; \mathrm{id}_{K[y]}, y\mathrm{d/d}y].$

Example

The (associative) quantum plane $\mathcal{O}_q(K^2)$ is $K\langle x, y \rangle / (x \cdot y - qy \cdot x), q \in K^{\times}$. $\mathcal{O}_q(K^2) \cong K[y][x; \sigma_q, 0_{K[y]}]$ where $\sigma_q(y) \coloneqq qy$.

The hom-associative quantum planes $\mathcal{O}_q^k(K^2)$ are $(\mathcal{O}_q(K^2), *, \alpha_k)$ where, $\alpha_k(y) \coloneqq ky$, and $\alpha_k(x) \coloneqq x$ for $k \in K^{\times}$. Here, x * y = kqy * x while $x * (y * y) - (x * y) * y = (k-1)k^3q^2y^2x$.

Example

U(L) the universal enveloping algebra of the two-dimensional, non-abelian Lie algebra L defined by [x, y] = y. $U(L) \cong K[y][x; \mathrm{id}_{K[y]}, y\mathrm{d}/\mathrm{d}y].$

Example

The (associative) quantum plane $\mathcal{O}_q(K^2)$ is $K\langle x, y \rangle / (x \cdot y - qy \cdot x), q \in K^{\times}$. $\mathcal{O}_q(K^2) \cong K[y][x; \sigma_q, 0_{K[y]}]$ where $\sigma_q(y) \coloneqq qy$.

The hom-associative quantum planes $\mathcal{O}_q^k(K^2)$ are $(\mathcal{O}_q(K^2), *, \alpha_k)$ where, $\alpha_k(y) \coloneqq ky$, and $\alpha_k(x) \coloneqq x$ for $k \in K^{\times}$. Here, x * y = kqy * x while $x * (y * y) - (x * y) * y = (k-1)k^3q^2y^2x$. Example

U(L) the universal enveloping algebra of the two-dimensional, non-abelian Lie algebra L defined by [x, y] = y. $U(L) \cong K[y][x; \mathrm{id}_{K[y]}, y\mathrm{d/d}y].$

Example

The (associative) quantum plane $\mathcal{O}_q(K^2)$ is $K\langle x, y \rangle / (x \cdot y - qy \cdot x), q \in K^{\times}$. $\mathcal{O}_q(K^2) \cong K[y][x; \sigma_q, 0_{K[y]}]$ where $\sigma_q(y) \coloneqq qy$.

The hom-associative quantum planes $\mathcal{O}_q^k(K^2)$ are $(\mathcal{O}_q(K^2), *, \alpha_k)$ where, $\alpha_k(y) \coloneqq ky$, and $\alpha_k(x) \coloneqq x$ for $k \in K^{\times}$. Here, x * y = kqy * x while $x * (y * y) - (x * y) * y = (k-1)k^3q^2y^2x$.

Example

U(L) the universal enveloping algebra of the two-dimensional, non-abelian Lie algebra L defined by [x, y] = y. $U(L) \cong K[y][x; id_{K[y]}, yd/dy].$

Example

The (associative) quantum plane $\mathcal{O}_q(K^2)$ is $K\langle x, y \rangle / (x \cdot y - qy \cdot x), q \in K^{\times}$. $\mathcal{O}_q(K^2) \cong K[y][x; \sigma_q, 0_{K[y]}]$ where $\sigma_q(y) \coloneqq qy$.

The hom-associative quantum planes $\mathcal{O}_q^k(K^2)$ are $(\mathcal{O}_q(K^2), \star, \alpha_k)$ where, $\alpha_k(y) \coloneqq ky$, and $\alpha_k(x) \coloneqq x$ for $k \in K^{\times}$. Here, $x \star y = kqy \star x$ while $x \star (y \star y) - (x \star y) \star y = (k-1)k^3q^2y^2x$.

Example

U(L) the universal enveloping algebra of the two-dimensional, non-abelian Lie algebra L defined by [x, y] = y. $U(L) \cong K[y][x; \mathrm{id}_{K[y]}, y\mathrm{d}/\mathrm{d}y].$

Example

In Quantum Mechanics, $p \cdot q - q \cdot p = i\hbar 1$ (or $p \cdot q - q \cdot p = 1$). The first (associative) Weyl algebra $A_1(K)$ is $K\langle x, y \rangle / (x \cdot y - y \cdot x - 1_K), A_1(K) \cong K[y][x; \mathrm{id}_{K[y]}, \mathrm{d/d}y].$

Conjecture ([Dix68]): All endomorphisms on $A_1(K)$ are automorphisms.

The hom-associative Weyl algebras $A_1^k(K)$ are $(A_1(K), *, \alpha_k)$ where $\alpha_k(y) \coloneqq y + k$, and $\alpha_k(x) \coloneqq x$ for $k \in K$. Here, $[x, y]_* \coloneqq x * y - y * x = 1_K$, while $1_K * y = \alpha_k(y) = y + k$.

Example

In Quantum Mechanics, $p \cdot q - q \cdot p = i\hbar 1$ (or $p \cdot q - q \cdot p = 1$). The first (associative) Weyl algebra $A_1(K)$ is $K\langle x, y \rangle / (x \cdot y - y \cdot x - 1_K), A_1(K) \cong K[y][x; \mathrm{id}_{K[y]}, \mathrm{d/dy}].$

Conjecture ([Dix68]): All endomorphisms on $A_1(K)$ are automorphisms.

The hom-associative Weyl algebras $A_1^k(K)$ are $(A_1(K), *, \alpha_k)$ where $\alpha_k(y) \coloneqq y + k$, and $\alpha_k(x) \coloneqq x$ for $k \in K$. Here, $[x, y]_* \coloneqq x * y - y * x = 1_K$, while $1_K * y = \alpha_k(y) = y + k$.

Example

In Quantum Mechanics, $p \cdot q - q \cdot p = i\hbar 1$ (or $p \cdot q - q \cdot p = 1$). The first (associative) Weyl algebra $A_1(K)$ is $K\langle x, y \rangle / (x \cdot y - y \cdot x - 1_K), A_1(K) \cong K[y][x; \mathrm{id}_{K[y]}, \mathrm{d/d}y].$

Conjecture ([Dix68]): All endomorphisms on $A_1(K)$ are automorphisms.

The hom-associative Weyl algebras $A_1^k(K)$ are $(A_1(K), *, \alpha_k)$ where $\alpha_k(y) \coloneqq y + k$, and $\alpha_k(x) \coloneqq x$ for $k \in K$. Here, $[x, y]_* \coloneqq x * y - y * x \equiv 1_K$, while $1_K * y \equiv \alpha_k(y) \equiv y + k$.

Example

In Quantum Mechanics, $p \cdot q - q \cdot p = i\hbar 1$ (or $p \cdot q - q \cdot p = 1$). The first (associative) Weyl algebra $A_1(K)$ is $K\langle x, y \rangle / (x \cdot y - y \cdot x - 1_K), A_1(K) \cong K[y][x; \mathrm{id}_{K[y]}, \mathrm{d/d}y].$

Conjecture ([Dix68]): All endomorphisms on $A_1(K)$ are automorphisms.

The hom-associative Weyl algebras $A_1^k(K)$ are $(A_1(K), *, \alpha_k)$ where $\alpha_k(y) \coloneqq y + k$, and $\alpha_k(x) \coloneqq x$ for $k \in K$. Here, $[x, y]_* \coloneqq x * y - y * x = 1_K$, while $1_K * y = \alpha_k(y) = y + k$.

 $f: A_1(K) \to A'_1(K) \subset M_{\infty}(K) \text{ by}$ $x \mapsto X := \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & \cdots \\ 0 & 0 & 0 & 3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad y \mapsto Y := \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$

 $[X,Y] = I. Define \alpha'_k(X) \coloneqq X, \ \alpha'_k(Y) \coloneqq Y + kI. Then A_1^k(K) \coloneqq (A_1(K), *, \alpha_k) \cong (A'_1(K), *', \alpha'_k).$

 $g: A_1(K) \to A_1''(K) \subset \operatorname{End}_K(K[z])$ by

 $x \mapsto D_z \coloneqq \mathrm{d}/\mathrm{d}z, \quad y \mapsto M_z \coloneqq z\mathrm{id}_{K[z]},$

 $[D_z, M_z] = \mathrm{id}_{K[z]}$. Put $\alpha''_k(D_z) \coloneqq D_z = D_{z+k}, \, \alpha''_k(M_z) \coloneqq M_{z+k}$. Then $A_1^k(K) \coloneqq (A_1(K), *, \alpha_k) \cong (A_1''(K), *'', \alpha''_k)$.

$$f: A_1(K) \to A'_1(K) \subset M_{\infty}(K) \text{ by}$$
$$x \mapsto X := \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & \cdots \\ 0 & 0 & 0 & 3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad y \mapsto Y \coloneqq \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 $[X,Y] = I. \text{ Define } \alpha'_k(X) \coloneqq X, \ \alpha'_k(Y) \coloneqq Y + kI. \text{ Then } A_1^k(K) \coloneqq (A_1(K), *, \alpha_k) \cong (A'_1(K), *', \alpha'_k).$

 $g: A_1(K) \to A_1''(K) \subset \operatorname{End}_K(K[z])$ by

 $x \mapsto D_z \coloneqq \mathrm{d}/\mathrm{d}z, \quad y \mapsto M_z \coloneqq z\mathrm{id}_{K[z]},$

 $[D_z, M_z] = \mathrm{id}_{K[z]}$. Put $\alpha''_k(D_z) \coloneqq D_z = D_{z+k}, \, \alpha''_k(M_z) \coloneqq M_{z+k}$. Then $A_1^k(K) \coloneqq (A_1(K), *, \alpha_k) \cong (A_1''(K), *'', \alpha''_k)$.

$$f: A_1(K) \to A'_1(K) \subset M_{\infty}(K) \text{ by}$$
$$x \mapsto X \coloneqq \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & \cdots \\ 0 & 0 & 0 & 3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad y \mapsto Y \coloneqq \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 $\begin{bmatrix} X, Y \end{bmatrix} = I. \text{ Define } \alpha'_k(X) \coloneqq X, \ \alpha'_k(Y) \coloneqq Y + kI. \text{ Then } A_1^k(K) \coloneqq (A_1(K), *, \alpha_k) \cong (A'_1(K), *', \alpha'_k).$

 $g: A_1(K) \to A_1''(K) \subset \operatorname{End}_K(K[z])$ by

 $x \mapsto D_z \coloneqq \mathrm{d}/\mathrm{d}z, \quad y \mapsto M_z \coloneqq z\mathrm{id}_{K[z]},$

 $[D_z, M_z] = \mathrm{id}_{K[z]}$. Put $\alpha''_k(D_z) \coloneqq D_z = D_{z+k}, \, \alpha''_k(M_z) \coloneqq M_{z+k}$. Then $A_1^k(K) \coloneqq (A_1(K), *, \alpha_k) \cong (A_1''(K), *'', \alpha''_k)$.

$$f: A_1(K) \to A'_1(K) \subset M_{\infty}(K) \text{ by}$$
$$x \mapsto X \coloneqq \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & \cdots \\ 0 & 0 & 0 & 3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad y \mapsto Y \coloneqq \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 $[X,Y] = I. \text{ Define } \alpha'_k(X) \coloneqq X, \ \alpha'_k(Y) \coloneqq Y + kI. \text{ Then } A_1^k(K) \coloneqq (A_1(K), *, \alpha_k) \cong (A'_1(K), *', \alpha'_k).$

 $g{:}\,A_1(K) \to A_1''(K) \subset \operatorname{End}_K(K[z])$ by

 $x \mapsto D_z \coloneqq \mathrm{d}/\mathrm{d}z, \quad y \mapsto M_z \coloneqq z\mathrm{id}_{K[z]},$

 $[D_{z}, M_{z}] = \mathrm{id}_{K[z]}. \text{ Put } \alpha_{k}^{\prime\prime}(D_{z}) \coloneqq D_{z} = D_{z+k}, \, \alpha_{k}^{\prime\prime}(M_{z}) \coloneqq M_{z+k}.$ Then $A_{1}^{k}(K) \coloneqq (A_{1}(K), *, \alpha_{k}) \cong (A_{1}^{\prime\prime}(K), *^{\prime\prime}, \alpha_{k}^{\prime\prime}).$

$$f: A_1(K) \to A'_1(K) \subset M_{\infty}(K) \text{ by}$$
$$x \mapsto X \coloneqq \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & \cdots \\ 0 & 0 & 0 & 3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad y \mapsto Y \coloneqq \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 $[X,Y] = I. \text{ Define } \alpha'_k(X) \coloneqq X, \ \alpha'_k(Y) \coloneqq Y + kI. \text{ Then } A_1^k(K) \coloneqq (A_1(K), *, \alpha_k) \cong (A'_1(K), *', \alpha'_k).$

 $g: A_1(K) \to A_1''(K) \subset \operatorname{End}_K(K[z])$ by

 $\begin{aligned} x \mapsto D_z &\coloneqq d/dz, \quad y \mapsto M_z \coloneqq z \operatorname{id}_{K[z]}, \\ [D_z, M_z] &= \operatorname{id}_{K[z]}. \text{ Put } \alpha_k''(D_z) \coloneqq D_z = D_{z+k}, \, \alpha_k''(M_z) \coloneqq M_{z+k}. \end{aligned}$ Then $A_1^k(K) \coloneqq (A_1(K), *, \alpha_k) \cong (A_1''(K), *'', \alpha_k''). \end{aligned}$

• $\alpha_k = e^{k\frac{\partial}{\partial y}}$, so for all $p, q \in A_1^k(K)$, $p * q = e^{k\frac{\partial}{\partial y}}(p \cdot q)$.

• $A_1^k(K)$ is simple and contains no zero divisors.

- $A_1^k(K)$ is power associative if and only if k = 0.
- $C(A_1^k(K)) = K$.

•
$$Z(A_1^k(K)) = \begin{cases} K & \text{if } k = 0, \\ \{0\} & \text{otherwise.} \end{cases}$$

[BR19] P. Bäck and J. Richter. "On the hom-associative Weyl algebras". In: arXiv:1902.05412 (2019).

• $\alpha_k = e^{k\frac{\partial}{\partial y}}$, so for all $p, q \in A_1^k(K)$, $p * q = e^{k\frac{\partial}{\partial y}}(p \cdot q)$.

• $A_1^k(K)$ is simple and contains no zero divisors.

- $A_1^k(K)$ is power associative if and only if k = 0.
- $C(A_1^k(K)) = K$.

•
$$Z(A_1^k(K)) = \begin{cases} K & \text{if } k = 0, \\ \{0\} & \text{otherwise.} \end{cases}$$

[[]BR19] P. Bäck and J. Richter. "On the hom-associative Weyl algebras". In: arXiv:1902.05412 (2019).

•
$$\alpha_k = e^{k\frac{\partial}{\partial y}}$$
, so for all $p, q \in A_1^k(K)$, $p \star q = e^{k\frac{\partial}{\partial y}}(p \cdot q)$.

• $A_1^k(K)$ is simple and contains no zero divisors.

• $A_1^k(K)$ is power associative if and only if k = 0.

•
$$C(A_1^k(K)) = K$$
.

•
$$Z(A_1^k(K)) = \begin{cases} K & \text{if } k = 0, \\ \{0\} & \text{otherwise.} \end{cases}$$

[[]BR19] P. Bäck and J. Richter. "On the hom-associative Weyl algebras". In: arXiv:1902.05412 (2019).

•
$$\alpha_k = e^{k\frac{\partial}{\partial y}}$$
, so for all $p, q \in A_1^k(K)$, $p * q = e^{k\frac{\partial}{\partial y}}(p \cdot q)$.

• $A_1^k(K)$ is simple and contains no zero divisors.

• $A_1^k(K)$ is power associative if and only if k = 0.

•
$$C(A_1^k(K)) = K.$$

•
$$Z(A_1^k(K)) = \begin{cases} K & if \ k = 0, \\ \{0\} & otherwise. \end{cases}$$

[[]BR19] P. Bäck and J. Richter. "On the hom-associative Weyl algebras". In: arXiv:1902.05412 (2019).

•
$$\alpha_k = e^{k\frac{\partial}{\partial y}}$$
, so for all $p, q \in A_1^k(K)$, $p * q = e^{k\frac{\partial}{\partial y}}(p \cdot q)$.

- $A_1^k(K)$ is simple and contains no zero divisors.
- $A_1^k(K)$ is power associative if and only if k = 0.

•
$$C(A_1^k(K)) = K.$$

• $Z(A_1^k(K)) = \begin{cases} K & \text{if } k = 0, \\ \{0\} & \text{otherwise.} \end{cases}$

[[]BR19] P. Bäck and J. Richter. "On the hom-associative Weyl algebras". In: arXiv:1902.05412 (2019).

- $\alpha_k = e^{k\frac{\partial}{\partial y}}$, so for all $p, q \in A_1^k(K)$, $p * q = e^{k\frac{\partial}{\partial y}}(p \cdot q)$.
- $A_1^k(K)$ is simple and contains no zero divisors.
- $A_1^k(K)$ is power associative if and only if k = 0.
- $C(A_1^k(K)) = K$.
- $Z(A_1^k(K)) = \begin{cases} K & \text{if } k = 0, \\ \{0\} & \text{otherwise.} \end{cases}$

[[]BR19] P. Bäck and J. Richter. "On the hom-associative Weyl algebras". In: arXiv:1902.05412 (2019).

•
$$\alpha_k = e^{k\frac{\partial}{\partial y}}$$
, so for all $p, q \in A_1^k(K)$, $p * q = e^{k\frac{\partial}{\partial y}}(p \cdot q)$.

- $A_1^k(K)$ is simple and contains no zero divisors.
- $A_1^k(K)$ is power associative if and only if k = 0.
- $C(A_1^k(K)) = K$.

•
$$Z(A_1^k(K)) = \begin{cases} K & \text{if } k = 0, \\ \{0\} & \text{otherwise.} \end{cases}$$

[[]BR19] P. Bäck and J. Richter. "On the hom-associative Weyl algebras". In: arXiv:1902.05412 (2019).

Corollary ([BR19])

 δ is a derivation on $A_1^k(K)$ for $k \neq 0$ iff

$$\delta = [cy + p(x), \cdot] = e^{-k\frac{\partial}{\partial y}} [cy + p(x), \cdot]_* \text{ for } c \in K \text{ and } p(x) \in K[x].$$

Proposition ([BR19])

Any homomorphism $f: A_1^k(K) \to A_1^l(K)$ for $k, l \neq 0$ is an isomorphism with $f(x) = \frac{l}{k}x + c$, $f(y) = \frac{k}{l}y + p(x)$ for $c \in K$ and $p(x) \in K[x]$.

Corollary ([BR19])

Corollary ([BR19]) δ is a derivation on $A_1^k(K)$ for $k \neq 0$ iff $\delta = [cy + p(x), \cdot] = e^{-k\frac{\partial}{\partial y}} [cy + p(x), \cdot]_*$ for $c \in K$ and $p(x) \in K[x]$.

Any homomorphism $f: A_1^k(K) \to A_1^l(K)$ for $k, l \neq 0$ is an isomorphism with $f(x) = \frac{l}{k}x + c$, $f(y) = \frac{k}{l}y + p(x)$ for $c \in K$ and $p(x) \in K[x]$.

Corollary ([BR19])

Corollary ([BR19]) δ is a derivation on $A_1^k(K)$ for $k \neq 0$ iff $\delta = [cy + p(x), \cdot] = e^{-k\frac{\partial}{\partial y}} [cy + p(x), \cdot]_*$ for $c \in K$ and $p(x) \in K[x]$.

Proposition ([BR19])

Any homomorphism $f: A_1^k(K) \to A_1^l(K)$ for $k, l \neq 0$ is an isomorphism with $f(x) = \frac{l}{k}x + c$, $f(y) = \frac{k}{l}y + p(x)$ for $c \in K$ and $p(x) \in K[x]$.

Corollary ([BR19])

Corollary ([BR19]) δ is a derivation on $A_1^k(K)$ for $k \neq 0$ iff $\delta = [cy + p(x), \cdot] = e^{-k\frac{\partial}{\partial y}} [cy + p(x), \cdot]_*$ for $c \in K$ and $p(x) \in K[x]$.

Proposition ([BR19])

Any homomorphism $f: A_1^k(K) \to A_1^l(K)$ for $k, l \neq 0$ is an isomorphism with $f(x) = \frac{l}{k}x + c$, $f(y) = \frac{k}{l}y + p(x)$ for $c \in K$ and $p(x) \in K[x]$.

Corollary ([BR19])

Definition (One-parameter formal hom-associative deformation)

A one-parameter formal hom-associative deformation of a hom-associative algebra over R, (M, \cdot_0, α_0) is a hom-associative algebra over R[[t]], $(M[[t]], \cdot_t, \alpha_t)$, where

$$\cdot_t = \sum_{i \in \mathbb{N}} \cdot_i t^i, \quad \alpha_t = \sum_{i \in \mathbb{N}} \alpha_i t^i.$$

Proposition ([BR19], [Bäc19]) $A_1^k(K)$, $\mathcal{O}_q^k(K^2)$, and $U^k(L)$ are one-parameter formal hom-associative deformations of $A_1(K)$, $\mathcal{O}_q(K^2)$, and U(L)

Remark

 $A_1(K)$ is formally rigid as an *associative* algebra.

[Bäc19] P. Bäck. "Notes on formal deformations of quantum planes and universal enveloping algebras". In: *Journal of Physics: Conf. Series* 1194.1 (2019).

Definition (One-parameter formal hom-associative deformation)

A one-parameter formal hom-associative deformation of a hom-associative algebra over R, (M, \cdot_0, α_0) is a hom-associative algebra over R[[t]], $(M[[t]], \cdot_t, \alpha_t)$, where

Proposition ([BR19], [Bäc19]) $A_1^k(K)$, $\mathcal{O}_q^k(K^2)$, and $U^k(L)$ are one-parameter formal hom-associative deformations of $A_1(K)$, $\mathcal{O}_q(K^2)$, and U(L).

Remark

 $A_1(K)$ is formally rigid as an *associative* algebra.

[Bäc19] P. Bäck. "Notes on formal deformations of quantum planes and universal enveloping algebras". In: *Journal of Physics: Conf. Series* 1194.1 (2019).

Definition (One-parameter formal hom-associative deformation)

A one-parameter formal hom-associative deformation of a hom-associative algebra over R, (M, \cdot_0, α_0) is a hom-associative algebra over R[[t]], $(M[[t]], \cdot_t, \alpha_t)$, where

Proposition ([BR19], [Bäc19]) $A_1^k(K)$, $\mathcal{O}_q^k(K^2)$, and $U^k(L)$ are one-parameter formal hom-associative deformations of $A_1(K)$, $\mathcal{O}_q(K^2)$, and U(L).

Remark $A_1(K)$ is formally rigid as an *associative* algebra

[Bäc19] P. Bäck. "Notes on formal deformations of quantum planes and universal enveloping algebras". In: *Journal of Physics: Conf. Series* 1194.1 (2019).

Definition (One-parameter formal hom-associative deformation)

A one-parameter formal hom-associative deformation of a hom-associative algebra over R, (M, \cdot_0, α_0) is a hom-associative algebra over R[[t]], $(M[[t]], \cdot_t, \alpha_t)$, where

Proposition ([BR19], [Bäc19])

 $A_1^k(K)$, $\mathcal{O}_q^k(K^2)$, and $U^k(L)$ are one-parameter formal hom-associative deformations of $A_1(K)$, $\mathcal{O}_q(K^2)$, and U(L).

Remark

 $A_1(K)$ is formally rigid as an *associative* algebra.

[Bäc19] P. Bäck. "Notes on formal deformations of quantum planes and universal enveloping algebras". In: *Journal of Physics: Conf. Series* 1194.1 (2019).

FORMAL HOM-LIE DEFORMATIONS

Definition (One-parameter formal hom-Lie deformation) A one-parameter formal hom-Lie deformation of a hom-Lie algebra over R, $(M, [\cdot, \cdot]_0, \alpha_0)$ is a hom-Lie algebra over R[[t]], $(M[[t]], [\cdot, \cdot]_t, \alpha_t)$, where

$$[\cdot, \cdot]_t = \sum_{i \in \mathbb{N}} [\cdot, \cdot]_i t^i, \quad \alpha_t = \sum_{i \in \mathbb{N}} \alpha_i t^i.$$

Proposition ([BR19], [Bäc19]) The hom-Lie algebras of $A_1^k(K)$, $\mathcal{O}_q^k(K^2)$, and $U^k(L)$ are one-parameter formal hom-Lie deformations of the Lie algebras of $A_1(K)$, $\mathcal{O}_q(K^2)$, and U(L), using the commutator as bracket.

FORMAL HOM-LIE DEFORMATIONS

Definition (One-parameter formal hom-Lie deformation) A one-parameter formal hom-Lie deformation of a hom-Lie algebra over R, $(M, [\cdot, \cdot]_0, \alpha_0)$ is a hom-Lie algebra over R[[t]], $(M[[t]], [\cdot, \cdot]_t, \alpha_t)$, where

$$[\cdot, \cdot]_t = \sum_{i \in \mathbb{N}} [\cdot, \cdot]_i t^i, \quad \alpha_t = \sum_{i \in \mathbb{N}} \alpha_i t^i.$$

Proposition ([BR19], [Bäc19]) The hom-Lie algebras of $A_1^k(K)$, $\mathcal{O}_q^k(K^2)$, and $U^k(L)$ are one-parameter formal hom-Lie deformations of the Lie algebras of $A_1(K)$, $\mathcal{O}_q(K^2)$, and U(L), using the commutator as bracket.

FORMAL HOM-LIE DEFORMATIONS

Definition (One-parameter formal hom-Lie deformation) A one-parameter formal hom-Lie deformation of a hom-Lie algebra over R, $(M, [\cdot, \cdot]_0, \alpha_0)$ is a hom-Lie algebra over R[[t]], $(M[[t]], [\cdot, \cdot]_t, \alpha_t)$, where

$$[\cdot, \cdot]_t = \sum_{i \in \mathbb{N}} [\cdot, \cdot]_i t^i, \quad \alpha_t = \sum_{i \in \mathbb{N}} \alpha_i t^i.$$

Proposition ([BR19], [Bäc19])

The hom-Lie algebras of $A_1^k(K)$, $\mathcal{O}_q^k(K^2)$, and $U^k(L)$ are one-parameter formal hom-Lie deformations of the Lie algebras of $A_1(K)$, $\mathcal{O}_q(K^2)$, and U(L), using the commutator as bracket.

Thank you!