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Introduction

Hom-associative algebras – algebras with the associativity
condition twisted by a homomorphism – arose with hom-Lie
algebras, introduced by Hartwig, Larsson, and
Silvestrov [HLS06].

Non-commutative polynomial rings – or Ore extensions – were
introduced by Ore Ore33, and generalized to non-associative
such by Nystedt, Öinert, and Richter [NÖR18].

Naïve idea – why not hom-associative Ore extensions?

[HLS06] J.T. Hartwig, D. Larsson, and S.D. Silvestrov. “Deformations of Lie
algebras using σ-derivations”. In: J. Algebra 295.2 (2006).
[NÖR18] P. Nystedt, J. Öinert, and J. Richter. “Non-associative Ore exten-
sions”. In: Isr. J. Math. 224.1 (2018).
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Hom-associative algebras: Preliminaries

Definition (Hom-everything)
A hom-associative algebra over an associative, commutative,
and unital ring R, is a triple (M, ⋅, α) consisting of an R-module
M , a binary operation ⋅∶M ×M →M linear over R in both
arguments, and an R-linear map α∶M →M , satisfying, for all
a, b, c ∈M ,

α(a) ⋅ (b ⋅ c) = (a ⋅ b) ⋅ α(c).

A hom-associative ring is a hom-associative algebra over Z.

A map f ∶A→ B between hom-associative algebras is a
homomorphism if it is linear, multiplicative, and f ○αA = αB ○ f .

A left (right) ideal I s.t. α(I) ⊆ I is a left (right) hom-ideal.
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Definition (Weakly unital hom-associative algebra)
A hom-associative algebra A is called weakly unital with weak
unit e ∈ A if for all a ∈ A, e ⋅ a = a ⋅ e = α(a).

Proposition ([BRS18])
Any multiplicative hom-associative R-algebra (M, ⋅, α) can be
embedded into a multiplicative, weakly unital hom-associative
algebra (M ⊕R, ●, βα). For any m1,m2 ∈M , r1, r2 ∈ R,

(m1, r1) ● (m2, r2) ∶=(m1 ⋅m2 + r1α(m2) + r2α(m1), r1r2),
βα(m1, r1) ∶=(α(m1), r1).

Proposition ([BRS18])
(M, ⋅, α) ≅ (M ⊕ 0, ●, βα) is a hom-ideal in (M ⊕R, ●, βα).

[BRS18] P. Bäck, J. Richter, and S. Silvestrov. “Hom-associative Ore exten-
sions and weak unitalizations”. In: Int. Electron. J. Algebra 24 (2018).
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Proposition ([Yau09])
Let A be a unital, associative algebra with unit 1A, α an algebra
endomorphism on A, and define ∗∶A ×A→ A for all a, b ∈ A by

a ∗ b ∶= α(a ⋅ b)

Then (A,∗, α) is a weakly unital hom-associative algebra with
weak unit 1A.

[Yau09] D. Yau. “Hom-algebras and Homology”. In: J. Lie Theory 19.2
(2009).
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Hom-Lie algebras: Preliminaries

Definition (Hom-Lie algebra)
A hom-Lie algebra over an associative, commutative, and unital
ring R is a triple (M, [⋅, ⋅], α) where M is an R-module,
α∶M →M a linear map called the twisting map, and
[⋅, ⋅]∶M ×M →M a bilinear and alternative map called the
hom-Lie bracket, satisfying for all a, b, c ∈M :

[α(a), [b, c]] + [α(c), [a, b]] + [α(b), [c, a]] = 0.

Proposition ([MS08])
Let (M, ⋅, α) be a hom-associative algebra with commutator [⋅, ⋅].
Then (M, [⋅, ⋅], α) is a hom-Lie algebra.

[MS08] A. Makhlouf and S.D. Silvestrov. “Hom-algebra structures”. In: J.
Gen. Lie Theory Appl. 2.2 (2008).
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Non-associative Ore extensions: Preliminaries
Definition (Left R-additivity)
If R is a non-associative, non-unital ring, a map β∶R → R is left
R-additive if for all r, s, t ∈ R, r ⋅ β(s + t) = r ⋅ (β(s) + β(t)).

If δ∶R → R and σ∶R → R are left R-additive maps, by a
non-associative, non-unital Ore extension of R, R[x;σ, δ], we
mean {∑i∈N aix

i} , finitely many ai ∈ R non-zero, endowed with
the addition

∑
i∈N

aix
i +∑

i∈N
bix

i ∶= ∑
i∈N
(ai + bi)xi, ai, bi ∈ R,

two polynomials being equal iff their coefficients are, ∀a, b ∈ R,

axm ⋅ bxn ∶= ∑
i∈N
(a ⋅ πm

i (b))xi+n.

Here πm
i is the sum of all (mi ) compositions of i copies of σ and

m − i copies of δ.
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For instance,

ax0 ⋅ bx0 = ∑
i∈N
(a ⋅ π0

i (b))xi+0 = (a ⋅ b)x0, so R ≅ Rx0,

a ⋅ bx = ∑
i∈N
(a ⋅ π0

i (b))xi+1 = (a ⋅ b)x,

ax ⋅ b = ∑
i∈N
(a ⋅ π1

i (b))xi+0 = (a ⋅ σ(b))x + a ⋅ δ(b).

Definition (σ-derivation)
A map δ∶R → R is a σ-derivation if δ(a ⋅ b) = δ(a) ⋅ b+σ(a) ⋅ δ(b),
a, b ∈ R, σ an endomorphism. If σ = idR, δ is a derivation.
If α∶R → R is any map, we may extend it homogeneously to
R[x;σ, δ] by α(axm) ∶= α(a)xm.
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A map δ∶R → R is a σ-derivation if δ(a ⋅ b) = δ(a) ⋅ b+σ(a) ⋅ δ(b),
a, b ∈ R, σ an endomorphism. If σ = idR, δ is a derivation.
If α∶R → R is any map, we may extend it homogeneously to
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Hom-assoc. Ore extensions: Necessity

Proposition ([BRS18])
Let R[x;σ, δ] be a non-unital, hom-associative Ore extension of
a non-unital, hom-associativ ring R with twisting map α∶R → R,
extended homogeneously to R[x;σ, δ]. Then, for all a, b, c ∈ R,

(a ⋅ b) ⋅ δ(α(c)) =(a ⋅ b) ⋅ α(δ(c)),
(a ⋅ b) ⋅ σ(α(c)) =(a ⋅ b) ⋅ α(σ(c)),
α(a) ⋅ σ(b ⋅ c) =α(a) ⋅ (σ(b) ⋅ σ(c)) ,
α(a) ⋅ δ(b ⋅ c) =α(a) ⋅ (δ(b) ⋅ c + σ(b)δ(c)) .
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Hom-assoc. Ore extensions: Sufficiency

Proposition ([BRS18])
Assume α is the twisting map of a non-unital, hom-associative
ring R, and extend the map homogeneously to R[X;σ, δ].
Assume α commutes with δ and σ, and that σ is an
endomorphism and δ a σ-derivation. Then R[X;σ, δ] is
hom-associative.

Proposition ([BRS18])
Let R[x;σ, δ] be a non-unital, associative Ore extension of a
non-unital, associative ring R, where σ is an endomorphism
and δ a σ-derivation. Assume α is a ring endomorphism that
commutes with σ and δ. Then (R[x;σ, δ],∗, α) is a
multiplicative, non-unital, hom-associative Ore extension with α
extended homogeneously to R[x;σ, δ].
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Hom-assoc. Ore extensions: Examples
K a field, char(K) = 0.
Example
The (associative) quantum plane Oq(K2) is
K⟨x, y⟩/ (x ⋅ y − qy ⋅ x), q ∈K×. Oq(K2) ≅K[y][x;σq,0K[y]]
where σq(y) ∶= qy.

The hom-associative quantum planes Ok
q (K2) are

(Oq(K2),∗, αk) where, αk(y) ∶= ky, and αk(x) ∶= x for k ∈K×.
Here, x∗y = kqy∗x while x∗(y∗y)−(x∗y)∗y = (k−1)k3q2y2x.

Example
U(L) the universal enveloping algebra of the two-dimensional,
non-abelian Lie algebra L defined by [x, y] = y.
U(L) ≅K[y][x; idK[y], yd/dy].

The hom-associative universal enveloping algebras of L, Uk(L),
are (U(L),∗, αk) where αk(y) ∶= ky, αk(x) ∶= x for k ∈K×.
Here, [x, y]∗ ∶= x ∗ y − y ∗ x = ky.
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The hom-associative Weyl algebras

Example
In Quantum Mechanics, p ⋅ q − q ⋅ p = ih̵1 (or p ⋅ q − q ⋅ p = 1). The
first (associative) Weyl algebra A1(K) is
K⟨x, y⟩/ (x ⋅ y − y ⋅ x − 1K), A1(K) ≅K[y][x; idK[y],d/dy].

Conjecture ([Dix68]): All endomorphisms on A1(K) are
automorphisms.

The hom-associative Weyl algebras Ak
1(K) are (A1(K),∗, αk)

where αk(y) ∶= y + k, and αk(x) ∶= x for k ∈K. Here,
[x, y]∗ ∶= x ∗ y − y ∗ x = 1K , while 1K ∗ y = αk(y) = y + k.

[Dix68] J. Dixmier. “Sur les algèbres de Weyl”. In: Bull. Soc. Math. France
96 (1968).
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Representations of Ak
1(K)

f ∶A1(K) → A′1(K) ⊂M∞(K) by

x↦X ∶=

⎛
⎜⎜⎜⎜
⎝

0 1 0 0 ⋯
0 0 2 0 ⋯
0 0 0 3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟
⎠

, y ↦ Y ∶=

⎛
⎜⎜⎜⎜
⎝

0 0 0 0 ⋯
1 0 0 0 ⋯
0 1 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟
⎠

.

[X,Y ] = I. Define α′k(X) ∶=X, α′k(Y ) ∶= Y + kI. Then
Ak

1(K) ∶= (A1(K),∗, αk) ≅ (A′1(K),∗′, α′k).

g∶A1(K) → A′′1(K) ⊂ EndK(K[z]) by

x↦Dz ∶= d/dz, y ↦Mz ∶= zidK[z],

[Dz,Mz] = idK[z]. Put α′′k(Dz) ∶=Dz =Dz+k, α′′k(Mz) ∶=Mz+k.
Then Ak

1(K) ∶= (A1(K),∗, αk) ≅ (A′′1(K),∗′′, α′′k).
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⎜⎜⎜⎜
⎝

0 1 0 0 ⋯
0 0 2 0 ⋯
0 0 0 3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟
⎠

, y ↦ Y ∶=

⎛
⎜⎜⎜⎜
⎝

0 0 0 0 ⋯
1 0 0 0 ⋯
0 1 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟
⎠

.

[X,Y ] = I. Define α′k(X) ∶=X, α′k(Y ) ∶= Y + kI. Then
Ak

1(K) ∶= (A1(K),∗, αk) ≅ (A′1(K),∗′, α′k).

g∶A1(K) → A′′1(K) ⊂ EndK(K[z]) by

x↦Dz ∶= d/dz, y ↦Mz ∶= zidK[z],

[Dz,Mz] = idK[z]. Put α′′k(Dz) ∶=Dz =Dz+k, α′′k(Mz) ∶=Mz+k.
Then Ak

1(K) ∶= (A1(K),∗, αk) ≅ (A′′1(K),∗′′, α′′k).
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Proposition ([BR19])

● αk = ek
∂
∂y , so for all p, q ∈ Ak

1(K), p ∗ q = e
k ∂
∂y (p ⋅ q).

● Ak
1(K) is simple and contains no zero divisors.

● Ak
1(K) is power associative if and only if k = 0.

● C(Ak
1(K)) =K.

● Z(Ak
1(K)) =

⎧⎪⎪⎨⎪⎪⎩

K if k = 0,
{0} otherwise.

[BR19] P. Bäck and J. Richter. “On the hom-associative Weyl algebras”. In:
arXiv:1902.05412 (2019).
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Corollary ([BR19])
δ is a derivation on Ak

1(K) for k ≠ 0 iff
δ = [cy + p(x), ⋅] = e−k

∂
∂y [cy + p(x), ⋅]∗ for c ∈K and p(x) ∈K[x].

Proposition ([BR19])
Any homomorphism f ∶Ak

1(K) → Al
1(K) for k, l ≠ 0 is an

isomorphism with f(x) = l
kx + c, f(y) =

k
l y + p(x) for c ∈K and

p(x) ∈K[x].

Corollary ([BR19])
Any endomorphism f on Ak

1(K) for k ≠ 0 is an automorphism
of the form f(x) = x + c and f(y) = y + p(x) for c ∈K and
p(x) ∈K[x].



15/18

Corollary ([BR19])
δ is a derivation on Ak

1(K) for k ≠ 0 iff
δ = [cy + p(x), ⋅] = e−k

∂
∂y [cy + p(x), ⋅]∗ for c ∈K and p(x) ∈K[x].

Proposition ([BR19])
Any homomorphism f ∶Ak

1(K) → Al
1(K) for k, l ≠ 0 is an

isomorphism with f(x) = l
kx + c, f(y) =

k
l y + p(x) for c ∈K and

p(x) ∈K[x].

Corollary ([BR19])
Any endomorphism f on Ak

1(K) for k ≠ 0 is an automorphism
of the form f(x) = x + c and f(y) = y + p(x) for c ∈K and
p(x) ∈K[x].



15/18

Corollary ([BR19])
δ is a derivation on Ak

1(K) for k ≠ 0 iff
δ = [cy + p(x), ⋅] = e−k

∂
∂y [cy + p(x), ⋅]∗ for c ∈K and p(x) ∈K[x].

Proposition ([BR19])
Any homomorphism f ∶Ak

1(K) → Al
1(K) for k, l ≠ 0 is an

isomorphism with f(x) = l
kx + c, f(y) =

k
l y + p(x) for c ∈K and

p(x) ∈K[x].

Corollary ([BR19])
Any endomorphism f on Ak

1(K) for k ≠ 0 is an automorphism
of the form f(x) = x + c and f(y) = y + p(x) for c ∈K and
p(x) ∈K[x].



15/18

Corollary ([BR19])
δ is a derivation on Ak

1(K) for k ≠ 0 iff
δ = [cy + p(x), ⋅] = e−k

∂
∂y [cy + p(x), ⋅]∗ for c ∈K and p(x) ∈K[x].

Proposition ([BR19])
Any homomorphism f ∶Ak

1(K) → Al
1(K) for k, l ≠ 0 is an

isomorphism with f(x) = l
kx + c, f(y) =

k
l y + p(x) for c ∈K and

p(x) ∈K[x].

Corollary ([BR19])
Any endomorphism f on Ak

1(K) for k ≠ 0 is an automorphism
of the form f(x) = x + c and f(y) = y + p(x) for c ∈K and
p(x) ∈K[x].



16/18

Formal hom-associative deformations
Definition (One-parameter formal hom-associative
deformation)
A one-parameter formal hom-associative deformation of a
hom-associative algebra over R, (M, ⋅0, α0) is a hom-associative
algebra over R[[t]], (M[[t]], ⋅t, αt), where

⋅t = ∑
i∈N
⋅iti, αt = ∑

i∈N
αit

i.

Proposition ([BR19], [Bäc19])
Ak

1(K), Ok
q (K2), and Uk(L) are one-parameter formal

hom-associative deformations of A1(K), Oq(K2), and U(L).

Remark
A1(K) is formally rigid as an associative algebra.
[Bäc19] P. Bäck. “Notes on formal deformations of quantum planes and
universal enveloping algebras”. In: Journal of Physics: Conf. Series 1194.1
(2019).
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Formal hom-Lie deformations

Definition (One-parameter formal hom-Lie deformation)
A one-parameter formal hom-Lie deformation of a hom-Lie
algebra over R, (M, [⋅, ⋅]0, α0) is a hom-Lie algebra over R[[t]],
(M[[t]], [⋅, ⋅]t, αt), where

[⋅, ⋅]t = ∑
i∈N
[⋅, ⋅]iti, αt = ∑

i∈N
αit

i.

Proposition ([BR19], [Bäc19])
The hom-Lie algebras of Ak

1(K), Ok
q (K2), and Uk(L) are

one-parameter formal hom-Lie deformations of the Lie algebras
of A1(K), Oq(K2), and U(L), using the commutator as bracket.
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Thank you!


