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Silvestrov [HLSO06].

Non-commutative polynomial rings — or Ore extensions — were
introduced by Ore [Ore33|, and generalized to non-associative
such by Nystedt, Oinert, and Richter [NOR18].
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A hom-associative algebra over an associative, commutative,
and unital ring R, is a triple (M, -, «) consisting of an R-module
M, a binary operation - M x M — M linear over R in both
arguments, and an R-linear map a: M — M, satisfying, for all
a,b,ce M,

a(a)-(b-c)=(a-b)-a(c).

A home-associative ring is a hom-associative algebra over Z.

A map f: A — B between hom-associative algebras is a
homomorphism if it is linear, multiplicative, and foas =apo f.

A left (right) ideal I s.t. a(I) c I is a left (right) hom-ideal.
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Proposition ([BRS18])

Any multiplicative hom-associative R-algebra (M,-, ) can be
embedded into a multiplicative, weakly unital hom-associative
algebra (M @ R,e,8,). For any my,mga€ M, 11,79 € R,

(m1,71) @ (ma,72) :=(my - mg + ria(msg) + roa(my ), r172),

Ba(mi,r1) =(a(my),r1).

Proposition ([BRS18])
(M,,a)2(M&0,e,8,) is a hom-ideal in (M & R,e,[,).

[BRS18] P. Béck, J. Richter, and S. Silvestrov. “Hom-associative Ore exten-
sions and weak unitalizations”. In: Int. Electron. J. Algebra 24 (2018).
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Proposition ([Yau09])

Let A be a unital, associative algebra with unit 14, a an algebra
endomorphism on A, and define »: Ax A — A for all a,be A by

a*b:=a(a-b)

Then (A, *,«) is a weakly unital hom-associative algebra with
weak unit 1 4.

[Yau09] D. Yau. “Hom-algebras and Homology”. In: J. Lie Theory 19.2
(2009).
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Definition (Hom-Lie algebra)

A hom-Lie algebra over an associative, commutative, and unital
ring R is a triple (M, [-,-],«) where M is an R-module,

a:M — M a linear map called the twisting map, and

[,-]: M x M - M a bilinear and alternative map called the
hom-Lie bracket, satisfying for all a,b,c € M:

[a(a), (b, c]] + [a(c), [a,b]] + [a(b), [c, a]] =0.

Proposition ([MS08])

Let (M,-,«) be a hom-associative algebra with commutator [-,-].
Then (M, [-,-],«) is a hom-Lie algebra.

[MS08] A. Makhlouf and S.D. Silvestrov. “Hom-algebra structures”. In: J.
Gen. Lie Theory Appl. 2.2 (2008).
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non-associative, non-unital Ore extension of R, R[x;0,d], we
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two polynomials being equal iff their coefficients are, Va,b € R,

azr™ -ba" =Y (a7 (b)) 2"
ieN

Here 7" is the sum of all (T) compositions of i copies of ¢ and
m — 1 copies of d.



For instance,

afL‘O-be=Z(a wo(b)) 0 — (a-b)2°, so Rz Ra®,

1eN
a-br = %(a m(b))z"*! = (a-b)z,
ax-bz%(a-ﬂ'il(b)) o (a a(b))z+a-8(b).

Definition (o-derivation)
A map 6: R » R is a o-derivation if §(a-b) = d(a)-b+o(a)-d(b),

a,be R, 0 an endomorphism. If ¢ =idg, J is a derivation.

If a: R - R is any map, we may extend it homogeneously to

R[z;0,0] by a(az™) = a(a)z™.
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Proposition ([BRS18))

Let R[x;0,d] be a non-unital, hom-associative Ore extension of
a non-unital, hom-associativ ring R with twisting map c: R - R,
extended homogeneously to R[x;0,0]. Then, for all a,b,c € R,

(a-b)-6(a(c)) =(a-b)-a(d(c)),

(a-b)-o(a(c)) =(a-b)-a(a(c)),
a(a)-o(b-c) =a(a) - (O'(b) . a(c)) ,
ala)-6(b-c) =a(a) - (6(b)-c+o(b)d(c)).
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Proposition ([BRS18])

Assume « is the twisting map of a non-unital, hom-associative
ring R, and extend the map homogeneously to R[X;o,d].
Assume o commutes with 6 and o, and that o is an
endomorphism and § a o-derivation. Then R[X;0,0] is
hom-associative.

Proposition ([BRS18)])

Let R[x;0,d] be a non-unital, associative Ore extension of a
non-unital, associative ring R, where o is an endomorphism
and § a o-derivation. Assume « is a ring endomorphism that
commutes with o and §. Then (R[a:;a, 5], *,a) is a
multiplicative, non-unital, hom-associative Ore extension with «
extended homogeneously to R[x;0,0].
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K(z,y)/ (z-y-qy ), ge K*. Oy(K?) 2 K[y][w;04,0ky]
where o,(y) = qu.

The hom-associative quantum planes OS(KQ) are

(04(K?), %, a1) where, ay,(y) = ky, and ay(z) == for ke K*.
Here, %y = kqy * x while z % (y*y) - (z+y) *y = (k- 1)k3¢%y>x.
Example

U(L) the universal enveloping algebra of the two-dimensional,
non-abelian Lie algebra L defined by [z,y] = y.

U(L) = K[y][x;idgpy), yd/dy].

The hom-associative universal enveloping algebras of L, Uk(L),
are (U(L), *,ay) where ag(y) := ky, ax(z) =z for ke K*.
Here, [z,y]. =z *y—y*x = ky.
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THE HOM-ASSOCIATIVE WEYL ALGEBRAS

Example

In Quantum Mechanics, p-q—q-p=1ihl (or p-gq—q-p=1). The
first (associative) Weyl algebra A;(K) is

K(z,y)/ (z-y-y -z -1k), Ai(K) = K[y][;idgy,),d/dy].
Conjecture ([Dix68]): All endomorphisms on A;(K) are

automorphisms.

The hom-associative Weyl algebras A¥(K) are (A1(K), *,ay,)
where ay(y) ==y +k, and ai(z) :=x for k € K. Here,
[z,y]s i =x*xy—y*x =1k, while 1x xy=ap(y) =y +k.

[Dix68] J. Dixmier. “Sur les algebres de Weyl”. In: Bull. Soc. Math. France
96 (1968).
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REPRESENTATIONS OF AY(K)

fiA1(K) - AJ(K) ¢ Mo (K) by

0100 000 0
0020 - 1000
e X=lg 003 YV Elo1 00

[X,Y] =1. Define aj(X) =X, a;(Y):=Y +kl. Then
AF(K) = (A1 (), *, ap) 2 (A1 (K), ', ap).

g A1 (K) - AY(K) c Endg (K[z]) by

z— D, = d/dz, y= M, = ZidK[z]v

[Dz7Mz:| = idK[z]- Put Oég(Dz) = Dz = Dz+k7 O‘Z(Mz) = MZJrk'
Then A,{:(K) = (Al(K)7 >('7a]€) = (Alll(K)7 *”,O[;CI :
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o qy = eka%, so for all p,qe A¥(K), p*q= eka%(p-q).
o AY(K) is simple and contains no zero divisors.

o AY(K) is power associative if and only if k = 0.

o C(ANK)) =K.

[BR19] P. Béck and J. Richter. “On the hom-associative Weyl algebras”. In:
arXiv:1902.05412 (2019).



Proposition ([BR19])

k2 k _
ap=¢e 9, so for allp,qe AJ(K), p*xq=e 9 (p-q).

A¥(K) is simple and contains no zero divisors.

A¥(K) is power associative if and only if k = 0.
C(A{(K)) =K.

2(A5(K) - {K o

{0} otherwise.

[BR19] P. Béck and J. Richter. “On the hom-associative Weyl algebras”. In:
arXiv:1902.05412 (2019).



Corollary ([BR19])

§ is a derivation on AY(K) for k 0 iff

d=[cy+p(x),]= e Fay [cy + p(x), ]« for ce K and p(x) € K[x].
Proposition ([BR19])

Any homomorphism f: A¥(K) - AL (K) for k,1+0 is an
isomorphism with f(x) = %x +ec, f(y) = %y +p(x) for ce K and
p(x) € K[x].

Corollary ([BR19])

Any endomorphism [ on A’f’(K ) for k 0 is an automorphism
of the form f(x)=x+c and f(y) =y +p(x) for ce K and

p(z) € K[z].
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FORMAL HOM-ASSOCIATIVE DEFORMATIONS

Definition (One-parameter formal hom-associative
deformation)
A one-parameter formal hom-associative deformation of a

hom-associative algebra over R, (M, -, aqp) is a hom-associative
algebra over R[[t]], (M[[t]],, ), where

4= Gt ap = Zaiti.
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Definition (One-parameter formal hom-associative
deformation)

A one-parameter formal hom-associative deformation of a
hom-associative algebra over R, (M, -9, ) is a hom-associative
algebra over R[[t]], (M[[t]],, ), where

4= Gt ap = Zaiti.
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Proposition ([BR19], [Béc19])
A¥(K), (’)lq“(KQ), and U*(L) are one-parameter formal
hom-associative deformations of A1(K), Oy(K?), and U(L).

[Bacl9] P. Bick. “Notes on formal deformations of quantum planes and
universal enveloping algebras”. In: Journal of Physics: Conf. Series 1194.1
(2019).
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Definition (One-parameter formal hom-associative
deformation)
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hom-associative algebra over R, (M, -9, ) is a hom-associative
algebra over R[[t]], (M[[t]],, ), where

4= Gt ap = Zaiti.
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Proposition ([BR19], [Béc19])
A¥(K), (’)lq“(KQ), and U*(L) are one-parameter formal
hom-associative deformations of A1(K), Oy(K?), and U(L).

Remark
A1 (K) is formally rigid as an associative algebra.

[Bacl9] P. Bick. “Notes on formal deformations of quantum planes and
universal enveloping algebras”. In: Journal of Physics: Conf. Series 1194.1
(2019).
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FORMAL HOM-LIE DEFORMATIONS

Definition (One-parameter formal hom-Lie deformation)

A one-parameter formal hom-Lie deformation of a hom-Lie
algebra over R, (M, [-,]o, ) is a hom-Lie algebra over R[[t]],
(M[[t]]’ ['7 ']t) at)? where

['7 ']t = Z[a ']iti, o = Z Oéiti.
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FORMAL HOM-LIE DEFORMATIONS

Definition (One-parameter formal hom-Lie deformation)

A one-parameter formal hom-Lie deformation of a hom-Lie
algebra over R, (M, [-,]o, ) is a hom-Lie algebra over R[[t]],
(M[[t]]’ ['7 ']t) at)? where

['7 ']t = Z[a ']iti, o = Z Oéiti.

ieN ieN

Proposition ([BR19], [Béc19])

The hom-Lie algebras of A¥(K), O];(Kz), and U*(L) are
one-parameter formal hom-Lie deformations of the Lie algebras
of A1(K), O,(K?), and U(L), using the commutator as bracket.



Thank you!



