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Introduction

Originating in the study of noncommutative minimal surfaces
in R3, we were interested in better understanding the
geometry of noncompact noncommutative manifolds.

The noncommutative torus has been a prime example of a
compact noncommutative manifold.

The noncommutative cylinder is a noncompact manifold
which has many algebraic similarities with the
noncommutative torus.

We thought that it would be interesting to really see the
differences.

In particular, we were interested in projective modules over
the noncommutative cylinder.

Let me give you an introduction to the noncommutative
cylinder, as well as an explicit construction of projections
representing all classes in K -theory.
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The noncommutative cylinder

The noncommutative cylinder can be defined via a twisted
convolution product a la Rieffel (with respect to a cocycle), but let
us present it as follows. Let S(R× S1) denote the space of
Schwartz functions on R× S1. Every f ∈ S(R× S1) may be
written as

f (u, t) =
∑
n∈Z

fn(u)e2πint (1)

with fn ∈ S(R).

For

f (u, t) =
∑
n∈Z

fn(u)e2πint and g(u, t) =
∑
n∈Z

gn(u)e2πint

we define

(f •~ g)(u, t) =
∑
n∈Z

[∑
k∈Z

fk(u)gn−k(u + k~)

]
e2πint .
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The noncommutative cylinder

Denote W = e2πit (which is strictly speaking not in the algebra,
since it does not decay) and note that we can think of the product
in the algebra as functions of u commuting and the commutation
with W as a shift; i.e.

f (u)g(u) = g(u)f (u)

Wf (u) = f (u + ~)W .

The noncommutative cylinder was studied by W. van Suijlekom
(JMP, 2004), but a particular cocycle was not chosen giving the
formulas we present above. Furthermore, no study of
derivations,traces or projective modules was initiated. He did
however compute the K -theory (K0 = Z), which I will come back
to.
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Derivations

The algebra I’ve presented can be completed in to a C ∗-algebra C~
in a standard way, but we will be mostly interested in the smooth
part C∞~ .

There are two canonical derivations on C∞~ . For

f (u, t) =
∑
n∈Z

fn(u)W n

define

∂1f =
∑
n∈Z

f ′n(u)W n and ∂2f = 2πi
∑
n∈Z

nfn(u)W n.

Then ∂1 and ∂2 are hermitian derivations of C∞~ and [∂1, ∂2] = 0.
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Trace / Integral

For f ∈ C∞~ with

f (u, t) =
∑
n∈Z

fn(u)W n

we set (note that Schwartz functions are integrable)

τ(f ) =

∫ ∞
−∞

f0(u)du.

τ is a positive invariant trace; that is, it has the properties

1 τ(f ∗) = τ(f ),

2 τ(f ∗f ) ≥ 0,

3 τ(fg) = τ(gf ),

4 τ(∂1f ) = τ(∂2f ) = 0,

for all f , g ∈ C∞~ .
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Projective modules

Let us consider a projective module defined by a projection. A
projection p ∈ Mn(A) (i.e a n × n matrix over the algebra A
satisfying p2 = p) defines a projective module as its image when
acting on a free module of rank n as a matrix:

p(v) = p
( n∑

i=1

eiv
i
)

=
n∑

i ,j=1

eip
i
jv

j

where {e1, . . . , en} is a basis of the free module.

In differential geometry, the finitely generated projective modules
over the algebra of functions are precisely the vector bundles over
the manifold (or, the space of sections of vector bundles). This is
the content of the Serre-Swan theorems.

Finitely generated projective modules are therefore considered to
be the “vector bundles” of noncommutative geometry.
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K -theory

Essence of K0:

For an algebra A, K0(A) is the set of equivalence classes of
projections in M∞(A).

Two projections p, q are equivalent if p = uqu−1 for some
invertible matrix u. (They define equivalent projective
modules.)

The sum of p and q is just the matrix obtained from p and q
by constructing a new matrix with p and q as diagonal blocks.

This made into a group by introducing a “formal additive
inverse” (much like the integers are defined from the natural
numbers).

Thus, K0(A) describes the structure of finitely generated projective
modules. As already mentioned K0(C~) = Z.

K -theory (including higher K -groups) is invariant under Morita
equivalence.
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Projectors in the algebra

Can one find projectors in the algebra itself (i.e. a (1× 1)-matrix)?
An algebra element such that p∗ = p and p2 = p?

On a connected manifold, there are no nontrivial continuous
functions f such that f 2 = f (i.e. only f = 1 and f = 0).

However, in noncommutative geometry, there might be nontrivial
projections in the algebra itself. A well-known case is the
non-commutative torus.

Can one find projectors on the noncommutative cylinder?
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Projections in C∞~

Let us make the following Ansatz for a projection:

p = g(u + ~)W + f (u) + g(u)W−1.

with f , g being real-valued (note that p∗ = p by construction).

Demanding p2 = p is equivalent to

g(u)g(u + ~) = 0

g(u)
(
1− f (u)− f (u − ~)

)
= 0

g(u)2 + g(u + ~)2 = f (u)− f (u)2

We can find functions f , g satisfying these equations.
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Projections in C∞~

f and g can be given as any number of repetitions of functions
with support in [0, 2~] as in the following figure:

g(u) =
√
f (u)− f (u)2 (when g(u) 6= 0)
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A class of projective modules

Hence, for every integer n ≥ 1, we have constructed a projection
pn ∈ C∞~ as

pn = gn(u + ~)W + fn(u) + gn(u)W−1,

giving the projective module Mn = pn(C~).

Proposition

Let pn be defined as above. Then τ(pn) = n~.

The above result shows that the modules Mn and Mm are
equivalent if and only if n = m, since if two projections p and q are
equivalent in a C ∗-algebra A then there exists u ∈ A such that
p = uqu−1 implying that

tr(p) = tr(uqu−1) = tr(u−1uq) = tr(q)
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Representatives of K0(C~)

Next, let us show that these projections respect the group
structure of Z.

Proposition

Let n,m be integers with n,m ≥ 1. Then

Mn ⊕Mm ' Mn+m

The proof is done by “pasting” the functions fn, gn and fm, gm next
to each other. One has to prove that the projective module defined
by shifted functions is equivalent to the unshifted module.

Hence, the group generated by the projective modules is
isomorphic to Z, giving representatives of the classes of K0(C~).
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A noncommutative catenoid

Let us do some Riemannian geometry of the noncommutative
cylinder in the form of a noncommutative catenoid.

The catenoid is a minimal surface in R3. It has the topology of a
cylinder, but the induced metric from R3 is not flat.
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The catenoid

Let Ĉ∞~ denote a slightly different algebra; namely, we consider
elements of the form

f (u, t) =
∑
n∈Z

fn(u)e2πint

where fn ∈ C∞(R) such that fn 6= 0 for only a finite number. In
particular, this algebra is unital.

Let g denote the (abelian) Lie algebra generated by the derivations
∂1 and ∂2, and let M = (Ĉ∞~ )2 be a free module with basis e1, e2.
Elements of M correspond to noncommutative “vector fields”.
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Let Ĉ∞~ denote a slightly different algebra; namely, we consider
elements of the form

f (u, t) =
∑
n∈Z

fn(u)e2πint

where fn ∈ C∞(R) such that fn 6= 0 for only a finite number. In
particular, this algebra is unital.

Let g denote the (abelian) Lie algebra generated by the derivations
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A metric on M is given by a invertible hermitian form
h : M → M → A, determined by

hij = h(ei , ej)

An affine connection ∇ : g×M → M is metric if

∂
(
h(U,V )

)
= h

(
∇∂U,V

)
+ h
(
U,∇∂V

)
for all ∂ ∈ g, U,V ∈ M,

and torsion-free if

∇∂i ej −∇∂j ei = 0.

A metric and torsion-free real connection is called a Levi-Civita
connection. In the setting of pseudo-Riemannian calculi (see Axel’s
talk) there exists a unique Levi-Civita connection on the
noncommutative cylinder (for any metric).
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Connection and curvature

For hij = e2k(u)δij one obtains

∇1e1 = e1k
′(u) ∇1e2 = ∇2e1 = e2k

′(u) ∇2e2 = −e1k ′(u).

and

R(∂1, ∂2)e1 = ∇1∇2e1 −∇2∇1e1 = e2k
′′(u)

R(∂1, ∂2)e2 = ∇1∇2e2 −∇2∇1e2 = −e1k ′′(u)

R1212 = h
(
e1,R(∂1, ∂2)e2

)
= −e2k(u)k ′′(u),

giving the Gaussian curvature as

K =
1

2
hijRikjlh

kl = −e−2k(u)k ′′(u).
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∇1e1 = e1k
′(u) ∇1e2 = ∇2e1 = e2k

′(u) ∇2e2 = −e1k ′(u).

and

R(∂1, ∂2)e1 = ∇1∇2e1 −∇2∇1e1 = e2k
′′(u)

R(∂1, ∂2)e2 = ∇1∇2e2 −∇2∇1e2 = −e1k ′′(u)

R1212 = h
(
e1,R(∂1, ∂2)e2

)
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For a metric of the above form, a natural integration measure
corresponding to the volume form is given by τh(f ) = τ(fe2k(u)).
The total curvature is then

τh(K ) = −
∫ ∞
−∞

e−2k(u)k ′′(u)e2k(u)du = −
∫ ∞
−∞

k ′′(u)du

= lim
u→−∞

k ′(u)− lim
u→∞

k ′(u)

Here one notes a certain independence of the total curvature with
respect to perturbations of the metric; i.e. for k̃(u) = δ(u) + k(u)
one finds that τh(K̃ ) = τh(K ) whenever

lim
u→∞

δ′(u) = lim
u→−∞

δ′(u).

For instance, for k(u) = ln(cosh(u)), corresponding to the induced
metric on the catenoid, one obtains

τh(K ) = lim
u→−∞

tanh(u)− lim
u→∞

tanh(u) = −2,

valid also for all pertubations of the metric as above.
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Thanks for listening!
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