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1. Noncommutative principal bundles

Convention
Throughout this talk G is assumed to be a compact group and A is
assumed to be a unital C∗-algebra.
We call a group homomorphism α : G → Aut(A) an action of G on A
if for each x ∈ A the map g 7→ αg (x) is continuous.

Definition (Free actions on C∗-algebras)
An action α : G → Aut(A) is called free if the Ellwood map

Φ : A⊗alg A → C (G ,A), Φ(x ⊗ y)(g) := xαg (y)

has dense range.
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Example (Classical actions)
Let σ : X × G → X be a continuous action of G on a compact space X .

Then the map α : G → Aut(C (X )) defined by

αg (f )(x) := f (σ(x , g))

is an action of G on C (X ). Moreover, the following statements are
equivalent:
(a) The map σ is free in the classical sense, i. e., all stabilizers are trivial.
(b) The map X × G → X × X , (x , g) 7→ (x , σ(x , g)) is injective.
(c) The action α : G → Aut(C (X )) is free in the sense above.

Remark (Smooth principal bundles)
In the smooth category there is a bijective correspondence between free
(and proper) group actions and locally trivial principal bundles.
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Example (Quantum 2-tori)

Let θ ∈ R.

The quantum 2-torus T2
θ is the universal C∗-algebra generated

by unitaries U,V satisfying the commutation relation

UV = exp(2πiθ)VU.

We point out that T2
θ
∼= C (T2) (, T2) if and only if θ ∈ Z. Moreover, the

map α : T2 → Aut(T2
θ) given on generators by

α(z,w)(U) := z · U and α(z,w)(V ) := w · V

is a free and ergodic action of T2 on T2
θ.
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Example (Quantum SU(2))
Let q ∈ [−1, 1].

Woronowicz’s quantum SUq(2) is the universal C∗-algebra
generated by two elements a and c subject to the five relations

a∗a + cc∗ = 1, aa∗ + q2cc∗ = 1, cc∗ = c∗c ,

ac = qca, and ac∗ = qc∗a.

The map α : T→ Aut(SUq(2)) given on generators by

αz(a) := z · a and αz(c) := z · c

is a free action of T on SUq(2). It is called the quantum Hopf fibration.
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Why studying free actions?

The investigation and classification of actions of (quantum-) groups
on C∗-algebras is intrinsically interesting.
Free actions are closely related to the theory of Hopf-Galois extensions
and the study of strongly graded rings.
Noncommutative principal bundles are becoming increasingly prevalent
in applications to topology, geometry and mathematical physics:

I They appear in the study of 3-dim TQTF’s that are based on the
modular tensor category of representations of the Drinfeld double.

I Their applications in T-duality may lead to a better understanding of
T-duals and the question of their existence.

I They may be used to develop and a theory of quantum gerbes and a
fundamental group for noncommutative spaces (cf. [1]).
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2. Classification of noncommutative principal bundles

Remark (Classification of smooth principal bundles)

Given a smooth manifold M and a Lie group G , Čech cohomology provides
a method for classifying smooth principal G -bundles over M. In fact,

PBUN(M,G ) ∼= Ȟ1(M,G ).

We recall that smooth principal bundles correspond bijectively to free (and
proper) group actions. We may therefore approach a possible classification
of noncommutative principal bundles in the following way:

Problem (Classification of free actions)
Given a unital C∗-algebra B (=̂ C (M)) and a compact group G , understand
and classify all free actions α : G → Aut(A) such that AG = B.
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We recall that smooth principal bundles correspond bijectively to free (and
proper) group actions. We may therefore approach a possible classification
of noncommutative principal bundles in the following way:

Problem (Classification of free actions)
Given a unital C∗-algebra B (=̂ C (M)) and a compact group G , understand
and classify all free actions α : G → Aut(A) such that AG = B.

Stefan Wagner Geometric aspects of NCPB September 27, 2018 8 / 19



Remark (Structure theory of actions)

Let α : G → Aut(A) be any action with fixed point algebra B.
As every representation of G , the algebra A can be decomposed into
its isotypic components A(π), π ∈ Ĝ , and

⊕
π∈Ĝ A(π) is dense in A.

Each A(π), π ∈ Ĝ , carries a natural Hilbert B-module structure w. r. t.

〈x , y〉B := P0(x∗y) :=

∫
G
αg (x∗y) dg , x , y ∈ A(π).

The multiplication between isotypic components is well captured by
family of maps (fusion rules)

mπ,ρ : A(π)⊗B A(ρ) −→ A(π ⊗ ρ), mπ,ρ(x ⊗ y) := x · y .

For free actions the fusion rules are particularly good-natured which
makes classification certainly (more) available.
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π∈Ĝ A(π) is dense in A.
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Remark (Factor systems of free actions)

Let α : G → Aut(A) be a free action with fixed point algebra B.
For each representation (π,Vπ) of G there is a Hilbert space Hπ and
a coisometry s(π) ∈ L(Hπ,Vπ)⊗A satisfying

αg

(
s(π)

)
= π∗g s(π) ∀g ∈ G .

For each representation π of G we define the ∗-homomorphism

γπ : B → L(Hπ)⊗ B, γπ(b) := s(π)∗ (1Vπ ⊗ b) s(π)

and for each pair π, ρ of representations of G an element

ω(π, ρ) := s(π ⊗ ρ)∗ s(π) s(ρ) ∈ L(Hπ ⊗Hρ,Hπ⊗ρ)⊗ B.

The corresponding collection (H, γ, ω) =
(
Hπ, γπ, ω(π, ρ)

)
π,ρ∈Ĝ is

called a factor system of α : G → Aut(A).
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Factor systems are the key feature in our research program. In fact, they
satisfy interesting algebraic relations that make free actions accessible to
classification, K -theoretic considerations, and computations in general.

Theorem (Schwieger-W. 15’,16’,17’)
Let B be a unital C∗-algebra and G a compact group. In [2–4] we provided
a complete classification of free actions of G with fixed point algebra B in
terms of Hilbert B-modules and factor systems.
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3. Geometric aspects of noncommutative principal bundles

Many important geometric concepts like connenctions, parallel transport,
curvature, and characteristic classes depend on the choice of a connection
1-form (a.k.a. geometric distribution) on some principal bundle.

Remark (The Athiya sequence)
Given a principal G -bundle q : P → M, connection 1-forms on P are in a
1 : 1-correspondence with C∞(M)-linear sections of the Athiya-Sequence

0 −→ gau(P) −→ V(P)G −→ V(M) −→ 0.

Heuristic noncommutative approach:
Given a free action α : G → Aut(A) with fixed point algebra B, study its
geometric aspects in terms of a “generalized Athiya sequence”

derG (A) −→ der(B), δ 7→ δ|B.
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The main challenge of this approach is to find suitable conditions that help
to decide whether a given ∗-derivation on “B” extends to a G -equivariant
∗-derivation on “A”.

Statement of the main problem:
Let α : G → Aut(A) be a free action with fixed point algebra B and
B0 (=̂ C∞(M)) a dense unital ∗-subalgebra of B. Is there
(i) a G -invariant, dense unital ∗-subalgebra A0 (=̂ C∞(P)) of A with
A0 ∩ B = B0, and

(ii) a way to extend a given ∗-derivation δB : B0 → B0 to a G -equivariant
∗-derivation δA : A0 → A0.
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Why is this interesting?

Geometric aspects of noncommutative principal bundles have not been
studied yet in a conclusive way, mainly due to the abscence of a simple
notion of a “differentiable structure”.
Our results may be used to transfer the notions of connection 1-forms,
connections, parallel transport, curvature, and characteristic classes to
the noncommutative setting.
The mathematical description for classical gauge theories is given in
terms of smooth principal bundles. Hence, our analysis could yield a
natural framework for studying noncommutative gauge theories.
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The experience with our classification program for free actions suggests to
reduce the complexity of the above problem by tackling it in several steps.

Let M(G ) be the group C∗-algebra of G with generators λg , g ∈ G .

Definition (Cleft actions)
An action α : G → Aut(A) is called cleft if there exists a unitary element
u ∈ M(G )⊗A satisfying αg (u) = λ∗gu for all g ∈ G .

Remark (Cleft actions)

The quantum torus T2
θ together with its canonical free and ergodic

T2-action α : T2 → Aut(T2
θ) as described before is cleft.

Each cleft action is free, but the converse does not hold. For instance,
the quantum Hopf fibration is not cleft.
Cleft means that the coisometries discussed before are in fact unitaries
and the element u ∈ M(G )⊗A is just the collection of all uπ, π ∈ Ĝ .
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In what follows we fix a cleft action α : G → Aut(A) and put B := AG .

Moreover, we choose a unitary u ∈ M(G )⊗A with αg (u) = λ∗gu for all
g ∈ G and let (H, γ, ω) be the corresponding factor system.

Theorem (W. 18’)
Let B0 be a dense unital ∗-subalgebra of B. Moreover, let δB : B0 → B0 be
a ∗-derivation. Then the following assertions hold:
(a) The set

A0 := {Tr(ux) | x ∈ M0(G )⊗ B0}

gives a G -invariant, dense unital ∗-subalgebra of A with A0 ∩ B = B0.
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Theorem continued (W. 18’)
(b) If δA : A0 → A0 is an G -equivariant ∗-derivation that extends δB,

then H := −ıu∗δA(u) ∈ M(G )⊗ B0 is self-adjoint and satisfies

γδB(b)− δBγ(b) = ı[H, γ(b)], ∀b ∈ B0, (1)
− ıω∗δB(ω) = id⊗γ(H) + H2 − ω∗∆(H)ω. (2)

(c) If H ∈ M(G )⊗ B0 is self-adjoint and satisfies (1) and (2), then

δA
(
Tr(ux)

)
:= Tr

(
uδB(x) + ıuHx

)
, x ∈ M0(G )⊗ B0,

is a well-defined G -equivariant ∗-derivation that extends δB.
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Example (Coverings of quantum tori (cf. [1]))
Coverings of quantum tori provide a nice class of toy models for which the
“generalized Athiya sequence” is of a similar form as in the classical setting.

To Do’s!
Provide a similar result in the general setting of free actions.
Explore the role of the self-adjoint element H. In the classical setting
this obstruction does not exist!
Study interesting classes of examples such as Woronowicz’s SUq(2)
and the Connes-Landi spheres
Investigate related notions such as connections, parallel transport,
curvature, and characteristic classes.
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Investigate related notions such as connections, parallel transport,
curvature, and characteristic classes.
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