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General theorems about noetherian and artinian (unital,
associative) epsilon-strongly graded rings.
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Characterization of noetherian and artinian Leavitt path algebras
with coefficients in a unital ring
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Overview

Legend

Ring S (unital, associative)
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Legend

Ring S
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Overview

Idea 1

(”Hilbert Basis Theorem”) Under certain conditions on the
grading, the ring S is noetherian/artinian iff Se is
noetherian/artinian.

Idea 2 (application)

The principal component Se is often easier to understand than S .
This is especially true for Leavitt path algebras.
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Part 1: ”Hilbert basis theorem” for epsilon-strongly
graded rings
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Group graded rings

Definition

Let G be a group and let S be a ring.

A G -grading of S is a decomposition,

S =
⊕
g∈G

Sg , (1)

such that for all g , h ∈ G ,

SgSh ⊆ Sgh. (2)

If SgSh = Sgh it is a strong G -grading.
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Examples

Example

The group ring R[G ] =
⊕

g∈G Rδg where the δg ’s are formal
symbols. Multiplication is defined by the rule:

(r1δg )(r2δh) = r1r2δgh. (3)

Putting,

Sg := Rδg (4)

gives strong G -gradation.
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Examples

Example

The ring of Laurent polynomial ring K [X ,X−1] can be graded as
follows:

K [X ,X−1] =
⊕
i∈Z

KX i . (5)

Strong Z-grading.
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Noetherian strongly graded rings

”Hilbert Basis Theorem”

Theorem

(A. Bell (1987) [1]) Let G be a polycyclic-by-finite group and let S
be strongly G -graded. Then S is left (right) noetherian if and only
if Se is left (right) noetherian.
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Epsilon-strongly graded rings

Generalization of strongly graded rings.

Definition

(Nystedt, Öinert, Pinedo [2]) A G -grading,

S =
⊕
g∈G

Sg . (6)

is called epsilon-strong if, for all g ∈ G ,

1 SgSg−1Sg = Sg (symmetric)

2 SgSg−1 ⊆ Se is a unital Se-ideal.
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Example 2

Example

(J. Öinert) Consider M2(C) with the following Z-grading.

S0 =

(
C 0
0 C

)
,S1 =

(
0 C
0 0

)
,S−1 =

(
0 0
C 0

)
Sn = {0} for |n| > 1.
Check grading. Check symmetric.

S1S−1 =

(
C 0
0 0

)
( S0

Multiplicative identity

(
1 0
0 0

)
.

Similarly, S−1S1 =

(
0 0
0 C

)
.
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Subclasses of epsilon-strongly graded rings

1 Strongly-graded rings

2 Unital partial crossed products

3 Leavitt path algebras

Theorem

(Nystedt, Öinert [3]) Let R be a ring and let E be a finite directed
graph. Then LR(E ) is canonically epsilon-strongly Z-graded.
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General theorems

”Hilbert Basis Theorem for epsilon-strongly graded rings”

Theorem

(Lännström, 2018) Let G be a polycyclic-by-finite group and let S
be an epsilon-strongly G -graded ring. Then, S is left/right
noetherian if and only if Se is left/right noetherian.
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General theorems

Theorem

(Lännström, 2018) Let G be a torsion-free group and let S be an
epsilon-strongly G -graded ring. Then, S is left/right artinian if and
only if Se is left/right artinian and Sg 6= {0} for finitely many
g ∈ G .
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Remarks

Remark

Polycyclic-by-finite is the largest known class of group such that
the group ring C[G ] is one-sided noetherian.

Remark

Passman gave an example of an artinian twisted group ring (over a
field) by an infinte p-group.
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Part 2: Applications
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Applications

Application 1

Characterizations of noetherian and artinian unital partial crossed
products. Generalizes previous work on partial skew group rings by
Carvalho, Cortes, Ferrero.

Application to Leavitt path algebras.

Key point

Z is both polycyclic-by-finite and torsion-free. Hence, we can apply
the above theorems to the special case of Leavitt path algebras
(which are epsilon-strongly Z-graded)!!
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Leavitt path algebras

Algebraic analogues of graph C ∗-algebra and a generalization of
Leavitt algebras. (G. Abrams, G. Aranda Pino, P. Ara, M. A.
Moreno, E. Pardo).

Let R be a ring and let E be a directed graph.

Attach an R-algebra LR(E ) to the graph E .
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LPA definition

Definition

Let R be a ring and E = (E 0,E 1, s, r) be a directed graph. The
Leavitt path algebra attached to E with coefficients in R is the
R-algebra generated by the symbols:

1 {v | v ∈ E 0},
2 {f | f ∈ E 1},
3 {f ∗ | f ∈ E 1}.

...
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LPA definition (cont)

Definition
...
subject to the following relations:

1 vivj = δi ,jvi for all vi , vj ∈ E 0,

2 s(f )f = fr(f ) = f and r(f )f ∗ = f ∗s(f ) = f ∗ for all f ∈ E 1,

3 f ∗f ′ = δf ,f ′r(f ) for all f , f ′ ∈ E 1,

4
∑

f ∈E1,s(f )=v ff ∗ = v for all v ∈ E 0 for which s−1(v) is
non-empty and finite.
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Finiteness condition of graphs

Definition

We say that E satisfies Condition (NE) if there exists no cycle with
an exit.
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LPA example 1

Let E be the following graph:

acyclic graph

LR(E ) ∼= R (7)

Noetherian/artinian iff R is noetherian/artinian.
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LPA example 2

Let E be the following graph:

acyclic graph

LR(E ) ∼= M2(R) (8)

Semisimple ring iff R is a division ring.
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LPA example 3

Let E be the following graph:

Condition (NE)

LR(E ) ∼= R[X ,X−1] (9)

R noetherian =⇒ R[X ,X−1] noetherian.
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Applications to Leavitt path algebras

Generalized characterizations of noetherian and artinian Leavitt
path algebras with coefficients in a unital ring R.

For fields K : (Abrams, Ara, Siles Molina)
Conditions on E ⇐⇒ conditions on LK (E )
Ad-hoc methods

For commutative ring R: (Steinberg [4])
Conditions on E + conditions on R ⇐⇒ conditions on LR(E )
Utilizes framework of Steinberg algebras
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Applications to Leavitt path algebras

Extension of (Steinberg 2018 [4]) using different techniques.

Utilizes framework of epsilon-strongly graded rings

Theorem

(Lännström, 2018) Let R be a ring and E a directed graph. Then
the following assertions hold.

1 LR(E ) is left (right) noetherian if and only if R is left (right)
noetherian and E is a finite graph containing no cycles with
exits.

2 LR(E ) is left (right) artinian if and only if R is left (right)
artinian and E is a finite acyclic graph.
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Proof sketch

”Structure theorem for the principal component of LPAs”

Theorem

(cf. [5, Cor. 2.1.16]) Let E be a finite graph that satisfies
Condition (NE). Then, there are integers positive integers
n1, n2, . . . , nk such that,

(LR(E ))0 ∼= Mn1(R)×Mn2(R) · · · ×Mnk (R). (10)

Corollary: (LR(E ))0 is Morita equivalent with Rk for some integer.

Corollary: (LR(E ))0 left (right) noetherian/artininan iff R left
(right) noetherian/artinian.
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Proof sketch

Assume that R is left noetherian and E satisfies condition (NE).

By the previous corollary: (LR(E ))0 is left noetherian.
By ”Hilbert basis theorem”: LR(E ) is left noetherian.
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Semisimple LPAs

Not a full characterization. Straight-forward direction:

Theorem

Let R be a ring and let E be a directed graph. If LR(E ) is
semisimple then R is semisimple and E is acyclic.

Partial converse!

Theorem

(Lännström, 2018) Let R be a ring and let E be a directed graph.
If (i) R is semisimple and n1R is invertible for every integer n 6= 0,
and (ii) E is acyclic, then LR(E ) is semisimple.

”n1R is invertible for every integer n 6= 0” technical assumption
not necessary condition!
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Semisimple LPAs proof

Nystedt, Öinert and Pinedo [2] characterized when epsilon-strongly
graded rings are separable over their principal component.

Theorem

(Nystedt, Öinert, Pinedo [2]) Let S be an epsilon-strongly
Z-graded ring. Assume (i) that εi = 0 for all but finitely many
integers i and that (ii) trγ(1) is invertible in S0. If S0 is
semisimple, then S is semisimple.

A technical lemma:

Lemma

(Lännström, 2018) If E is a finite graph and R is a ring such that
n · 1R is invertible for each integer n 6= 0, then condition (ii) is
satisfied.
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Thank you for your attention!
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